Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein arrays.

Nanotechnology

University of Bristol, H. H. Wills Physics Laboratory, School of Physics, Tyndall Avenue, Bristol BS8 1TL, United Kingdom. CIC nanoGUNE consolider, Avenida Tolosa 76, E-20018, Donostita-San Sebastian, Spain. Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 6ª planta, E-48013 Bilbao, Spain.

Published: April 2017

We show that chemical fixation enables top-down micro-machining of large periodic 3D arrays of protein-encapsulated magnetic nanoparticles (NPs) without loss of order. We machined 3D micro-cubes containing a superlattice of NPs by means of focused ion beam etching, integrated an individual micro-cube to a thin-film coplanar waveguide and measured the resonant microwave response. Our work represents a major step towards well-defined magnonic metamaterials created from the self-assembly of magnetic nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa62f3DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
12
top-down design
4
design magnonic
4
magnonic crystals
4
crystals bottom-up
4
bottom-up magnetic
4
nanoparticles protein
4
protein arrays
4
arrays chemical
4
chemical fixation
4

Similar Publications

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

Individual theranostics with an integrated multifunction holds considerable promise for clinical application compared with multicomponent regimes. MnO nanoparticles with an ultrasmall size (4 nm) and mass production capability were developed with dual function of integrated tumor magnetic resonance imaging (MRI) and therapy. The high valence state of MnO nanocrystals enables a sensitive reaction with the glutathione (GSH) molecule and favorable decomposition ability, which further induces a unique, favorable, variable turn-off and turn-on MRI property.

View Article and Find Full Text PDF

Ultrathin 2D Cu-Porphyrin MOF Nanosheet Loaded FeO Nanoparticles As a Multifunctional Nanoplatform for Synergetic Chemodynamic and Photodynamic Therapy Independent of O.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.

In this study, we developed a multifunctional nanoplatform to address the limitations of strictly acidic pH for the Fenton reaction involving FeO and the low efficiency of mono treatments. The hybrid material, FeO@Cu-TCPP, was assembled through hydrophobic interactions of polyvinylpyrrolidone (PVP) coated on its surface. The efficiency of the Fenton reaction using FeO was significantly enhanced by the photo-Fenton process in the presence of Cu-TCPP.

View Article and Find Full Text PDF

Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).

View Article and Find Full Text PDF

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!