Mechanoresponsive luminescent (MRL) materials change their emission color upon application of external forces. Many dyes with MRL behavior are known, but they normally do not display useful mechanical properties. Here, we introduce a new approach to overcome this problem, which relies on combining MRL compounds with the concept of supramolecular polymerization. As a first embodiment, a cyano-substituted oligo(p-phenylenevinylene), whose MRL behavior is associated with different solid-state assemblies, was derivatized with two ureido-4-pyrimidinone groups, which support the formation of a dynamic supramolecular polymer. The new material displays the thermomechanical characteristics of a supramolecular polymer glass, offers three different emission colors in the solid state, and exhibits both MRL and thermoresponsive luminescent behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b00342DOI Listing

Publication Analysis

Top Keywords

supramolecular polymer
12
mrl behavior
8
mrl
5
mechano- thermoresponsive
4
thermoresponsive photoluminescent
4
supramolecular
4
photoluminescent supramolecular
4
polymer mechanoresponsive
4
mechanoresponsive luminescent
4
luminescent mrl
4

Similar Publications

Functional chitosan/HP-β-CD hydrogel for targeted co-delivery of Rhubarb-derived nanovesicles and kaempferol for alleviating ulcerative colitis.

Carbohydr Polym

March 2025

School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China. Electronic address:

Ulcerative colitis (UC) remains a major challenge in clinical treatment due to its multivariate pathology. Developing an oral formulation that encapsulates and delivers multiple active ingredients to target colon tissues by suppressing intestinal inflammation and restoring the intestinal barrier is crucial for effectively treating UC. Here, we developed rhubarb-derived nanovesicles (RNs) and a supramolecular hydrogel platform formed by furfural-functionalized chitosan-mannose polymer and synthesized 3-maleimide HP-β-CD, with kaempferol (Kae) integrated into the hydrophobic cavity.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Dynamic covalent polymer networks (DCPN) provide an important solution to the challenging recyclability of thermoset elastomers. However, dynamic bonds exhibit relatively weak bond energies, considerably decreasing the mechanical properties of DCPN. Herein, a novel reinforcement strategy for DCPN involving the in situ formation of supramolecular organic nanofillers through asynchronous polymerization is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!