Kinase Assay for CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) in Arabidopsis thaliana.

Methods Mol Biol

Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.

Published: February 2018

Protein kinases are central components of signal transduction pathways in the cell. They catalyze the phosphorylation of substrate proteins, resulting in changes of the activity, localization, stability, and protein interactions of the substrates, ultimately coordinating the activity of important cellular processes. CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) is a Raf-like protein kinase that functions as a negative regulator in the phytohormone ethylene signaling pathway. CTR1 physically interacts with ethylene receptors via its N-terminal domain at the endoplasmic reticulum, and is involved in suppressing ethylene signaling in the absence of ethylene. Recent studies demonstrated that CTR1 directly interacts with and differentially phosphorylates the positive regulator ETHYLENE INSENSITIVE 2 (EIN2), therefore regulating the movement of EIN2 into the nucleus. Here, we describe protocols for determining the kinase activity of CTR1 by calculating the incorporated radiolabeled phosphate [γ-P] from ATP into its physiological substrate, EIN2 protein.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6854-1_11DOI Listing

Publication Analysis

Top Keywords

constitutive triple
8
triple response
8
response ctr1
8
ethylene signaling
8
ctr1
5
ethylene
5
kinase assay
4
assay constitutive
4
ctr1 arabidopsis
4
arabidopsis thaliana
4

Similar Publications

Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.

View Article and Find Full Text PDF

Immune checkpoint inhibitors against PD-1/PD-L1 are highly effective in immunologically hot tumours such as triple-negative breast cancer, wherein constitutive DNA damage promotes inflammation, while inducing PD-L1 expression to avoid attack by cytotoxic T cells. However, whether and how PD-L1 regulates the DNA damage response and inflammation remains unclear. Here, we show that nuclear PD-L1 activates the ATR-Chk1 pathway and induces proinflammatory chemocytokines upon genotoxic stress.

View Article and Find Full Text PDF

In this study, four depsides were isolated from Origanum dictamnus L. and Satureja pilosa Velen. medicinal plants and their structures were assessed by means of one-dimensional (1D)- and two-dimensional (2D)-nuclear magnetic resonance, high resolution mass spectrometry, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

The importin α proteins IMPA1, IMPA2, and IMPA4 play redundant roles in suppressing autoimmunity in Arabidopsis thaliana.

Plant J

December 2024

Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.

Proteins in the importin α (IMPA) family play pivotal roles in intracellular nucleocytoplasmic transport. Arabidopsis thaliana possesses nine IMPA members, with diverse tissue-specific expression patterns. Among these nine IMPAs, IMPA1, IMPA2, and IMPA4 cluster together phylogenetically, suggesting potential functional redundancy.

View Article and Find Full Text PDF

Introduction: Insulin-like growth factor binding protein-3 (IGFBP-3) exerts varying effects on estrogen receptor alpha (ERα)-positive and triple-negative breast cancer (TNBC) cells. In ERα-positive cells, IGFBP-3 is antiproliferative and proapoptotic. In contrast, IGFBP-3 stimulates proliferation in triple-negative breast cancer (TNBC) cells via EGFR activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!