A C -symmetric triphenylbenzene based photoluminescent compound, 1,3,5-tris(4'-(N-methylamino)phenyl) benzene ([NHMe]TAPB), has been synthesized by mono-N-methylation of 1,3,5-tris(4'-aminophenyl) benzene (TAPB) and structurally characterized. [NHMe]TAPB acts as a selective fluorescent sensor for picric acid (PA) with a detection limit as low as 2.25 ppm at a signal to noise ratio of 3. Other related analytes (i.e. TNT, DNT and DNB) show very little effect on the fluorescence intensity of [NHMe]TAPB. The selectivity is triggered by proton transfer from picric acid to the fluorophore and ground-state complex formation between the protonated fluorophore and picrate anion through hydrogen bonding interactions. The fluorescence lifetime measurements reveal static nature of fluorescence quenching.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-017-2063-9DOI Listing

Publication Analysis

Top Keywords

picric acid
12
triphenylbenzene sensor
4
sensor selective
4
selective detection
4
detection picric
4
acid -symmetric
4
-symmetric triphenylbenzene
4
triphenylbenzene based
4
based photoluminescent
4
photoluminescent compound
4

Similar Publications

Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

To realize the aim of easy and accurate detection of ammonia and picric acid (PA) in both aqueous and vapor phases based on function-oriented investigation principles, in the present study, we include a luminescent performance with recognition performance, taking into account the application conditions. Zn(II) ions with luminescence qualities and an amine-substituted imidazole moiety with selective recognition properties towards picric acid and ammonia are coupled to generate a novel 1D luminous Zn(II) coordination polymer, Zn-CP [{Zn(II)( 2-ABZ)2(2-BDC)}].MeOH]∞, where 2-ABZ and 2-BDC stand for terephthalic acid and protonated 2 aminobenzimidazole, respectively.

View Article and Find Full Text PDF

Objective: Aim: Using morphometric methods to study the features of endotheliocyte remodeling of the arterial and venous beds of the testicles during long-term ethanol intoxication.

Patients And Methods: Materials and Methods: Endotheliocytes of the arterial and venous bed of the left and right testes of 60 white male rats, which were divided into two groups, were morphologically studied. The 1 group consisted of 30 intact animals, the 2 - 30 rats, which were daily intragastrically injected with a 30 % ethanol solution at the rate of 2 ml per 100 g of the animal's weight for 28 days.

View Article and Find Full Text PDF

Increasing attention has been paid to the detection of explosives due to the occurrence of terrorist attacks around the world. Here, we used free radical polymerization to develop two different types of fluorescent copolymers for use in detecting picric acid. One exhibits aggregation-caused quenching (ACQ) and is called PNNS [poly (-isopropyl acrylamide---hydroxymethyl acrylamide --styrene-pyrene), poly (NIPAAm--NMA--St-Py)].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!