Since 2004, the red fluorescent dye Sulforhodamine 101 (SR101) has been boosting the functional analysis of astrocytes in a functional environment in an unprecedented way. However, two major limitations have been challenging the usefulness of this tool for cellular imaging: (i) SR101 is not as specific for astrocytes as previously reported; and (ii) discoveries of severe excitatory side effects of SR101 are bearing the risk of unwanted alteration of the system of interest. In this article, we summarize the current knowledge about SR101-labeling protocols and discuss the problems that arise from varying of the staining protocols. Furthermore, we provide a testable hypothesis for the observed hyper-excitability that can be observed when using SR101.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328990 | PMC |
http://dx.doi.org/10.3389/fncel.2017.00044 | DOI Listing |
Macromol Rapid Commun
January 2025
School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China. Electronic address:
Porous structures exhibit an increased access surface area, thereby promoting the efficient transportation of active oxygen species. Reinforcing the development of artificial light-harvesting systems (LHSs) with porous structured supramolecular organic frameworks (SOFs) as the energy donor can significantly enhance its photocatalytic performance, thereby facilitating efficient organic transformation via photocatalysis. In this investigation, we have successfully fabricated a supramolecular organic framework (MT-SOF) composed of cucurbit[8]uril (CB[8]) and triphenylamine derivative (MeTPPA).
View Article and Find Full Text PDFSmall
November 2024
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
The natural process of photosynthesis involves a series of consecutive energy transfers, but achieving more steps of efficient energy transfer and photocatalytic organic conversion in artificial light-harvesting systems (ALHSs) continues to pose a significant challenge. In the present investigation, a range of ALHSs showcasing a sophisticated three-step energy transfer mechanism is designed, which are meticulously crafted using pillar[5]arene (WP[5]) and p-phenylenevinylene derivative (PPTPy), utilizing host-guest interactions as energy donors. Three distinct types of fluorescent dyes, namely Rhodamine B (RhB), Sulforhodamine 101 (SR101), and Cyanine 5 (Cy5), are employed as acceptors of energy.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Bright near-infrared (NIR) fluorescent probes play an important role in in vivo optical imaging. Here, renal-clearable nanodots prepared from Aza-BODIPY are reported fluorophores for multiphoton brain imaging. The design of donor-acceptor-donor (D-A-D) type conjugated structures endowed the fluorophores with large three-photon absorption cross-section for both 1620 and 2200 nm excitation.
View Article and Find Full Text PDFChem Sci
July 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
The continuing growth of the digital world requires new ways of constructing memory devices to process and store dynamic data, because the current ones suffer from inefficiency, limited reads, and difficulty to manufacture. Here we propose a supramolecular dynamic memory (SDM) strategy based on an enzymolysis-induced energy transfer co-assembly derived from a naphthalene-based cationic monomer and organic dye sulforhodamine 101, enabling the construction of spontaneously recoverable dynamic memory devices. Benefitting from the large exciton migration rate (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!