In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a () gene whose activity is indispensable for spatiotemporally correct expression of (), encoding the constitutively active sensor His kinase that activates MSP signaling. is a new allele of () that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the expression pattern. We show that expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in expression observed in /- and mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5411129 | PMC |
http://dx.doi.org/10.1104/pp.16.01964 | DOI Listing |
Sci Rep
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.
View Article and Find Full Text PDFSci Rep
January 2025
Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Radish is an important annual root vegetable crop, whose yield is largely dependent on taproot thickening and development. However, the regulatory network of WOXs-mediated taproot development remains poorly understood in radish. Herein, the RsWOX13 was classified in an ancient clade of the WOX gene family that harbors a conserved homeodomain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!