This study examined the impact of wood fuel consumption on health outcomes, specifically under-five and adult mortality in Sub-Saharan Africa, where wood usage for cooking and heating is on the increase. Generalized method of moment (GMM) estimators were used to estimate the impact of wood fuel consumption on under-five and adult mortality (and also male and female mortality) in the region. The findings revealed that wood fuel consumption had significant positive impact on under-five and adult mortality. It suggests that over the studied period, an increase in wood fuel consumption has increased the mortality of under-five and adult. Importantly, it indicated that the magnitude of the effect of wood fuel consumption was more on the under-five than the adults. Similarly, assessing the effect on a gender basis, it was revealed that the effect was more on female than male adults. This finding suggests that the resultant mortality from wood smoke related infections is more on under-five children than adults, and also are more on female adults than male adults. We, therefore, recommended that an alternative affordable, clean energy source for cooking and heating should be provided to reduce the wood fuel consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.03.019 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Gastrointestinal Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213100, China. Electronic address:
Epidemiological evidence connecting cooking fuel use to metabolic syndrome (MetS) is lacking. Solid cooking fuel usage and MetS prevalence were prospectively investigated in this study. We included participants in 2011 and 2015 from the China Health and Retirement Longitudinal Study (CHARLS) data.
View Article and Find Full Text PDFPLoS One
December 2024
Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya.
Introduction: Worldwide, 2.4 billion people rely on solid fuels such as wood or charcoal for cooking, leading to approximately 3.2 million deaths per year from illnesses attributable to household air pollution.
View Article and Find Full Text PDFSmall
December 2024
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
The conversion of biomass into chemical fuels is exciting but quite challenging in the development of an effective conversion strategy to generate easily-separated products without energy consumption. Herein, a lignocellulosic biomass-to-H conversion system via photo-thermal catalysis over MoC hierarchical nanotube catalysts in an acidic solution, in which the lignocellulose is hydrolyzed to small organic molecules (such as glucose, etc) by dilute HSO, and then the resulting glucose is oxidized by MoC catalyst to generate H are reported. During the photo-thermal catalytic processes, the carbon vacancy in MoC catalysts results in the generation of undercoordinated Mo sites, which act as active sites for both biomass oxidation and H generation reactions.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
Fuelwood is the primary source of heat energy for tea processing, but its availability is declining due to population growth and logging restrictions. This study aimed to optimize the economics of biomass fuel mixtures for tea processing boilers by integrating macadamia nutshells as a supplementary fuelwood. The objective was to develop a cost-effective fuel mix strategy using Response Surface Methodology (RSM) and MATLAB simulations.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN USA.
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of liver metastasis, these interactions play a crucial role in promoting tumor survival and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!