Collective migration of epithelial cells underlies diverse tissue-remodeling events, but the mechanisms that coordinate individual cell migratory behaviors for collective movement are largely unknown. Studying the Drosophila follicular epithelium, we show that the cadherin Fat2 and the receptor tyrosine phosphatase Lar function in a planar signaling system that coordinates leading and trailing edge dynamics between neighboring cells. Fat2 signals from each cell's trailing edge to induce leading edge protrusions in the cell behind, in part by stabilizing Lar's localization in these cells. Conversely, Lar signals from each cell's leading edge to stimulate trailing edge retraction in the cell ahead. Fat2/Lar signaling is similar to planar cell polarity signaling in terms of sub-cellular protein localization; however, Fat2/Lar signaling mediates short-range communication between neighboring cells instead of transmitting long-range information across a tissue. This work defines a key mechanism promoting epithelial migration and establishes a different paradigm for planar cell-cell signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354100 | PMC |
http://dx.doi.org/10.1016/j.devcel.2017.02.003 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.
Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA.
Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.
View Article and Find Full Text PDFJ R Soc Interface
December 2024
Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA.
For sustained swimming and flights, vertebrates and insects oscillate their propulsors periodically within a narrow range of Strouhal number (St), a dimensionless quantity describing the rate and density of the motion, suggesting a close relationship between the range and cruising optimality. The persistence of this range across size and fluids has puzzled biologists and engineers, resulting in multiple interpretations of its cause. Here, we propose that the optimal St range is largely constrained by power output efficiency of the trailing edge of the caudal fin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!