Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We hypothesized that the addition of silver nanoparticles (AgNP) to a dermal substrate would impart antibacterial properties without inhibiting the proliferation of contained cells. Our in vitro model was based on the commercial substrate, Integra. The substrate was prepared by simple immersion into 0 to 1% suspension of AgNP (75 or 200 nm diameter) followed by rinsing for 20 minutes and sterilization under an ultraviolet C lamp. A total of 10 human adipose stem cells per cubic centimeter were injected and after 1 hour, 6 × 10 keratinocytes/cm were seeded and cultured for up to 14 days. Constructs were evaluated using a metabolic assay (WST-1), and hematoxylin and eosin and immunoperoxidase staining. Bactericidal activity was measured using a log reduction assay against bacteria that are prevalent in burns. The presence of AgNP did not significantly change the metabolic activity of constructs after 14 days of culture, and the distribution of cells within the substrate was unchanged from the controls that did not have AgNP. Antibacterial activity of Integra containing AgNP (75 nm diameter) was concentration dependent. In conclusion, the addition of AgNP to the dermal substrate suppressed bacterial growth but did not significantly affect cell proliferation, and may represent an important property to incorporate into a future clinical skin regeneration system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7205/MILMED-D-16-00133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!