A new autoinductive cascade employing benzoyl fluoride as a latent source of fluoride is reported for signal amplification and optical detection of fluoride. The autoinduction leads to a maximum 4-fold signal enhancement for each fluoride generated, as well as a self-propagating cycle that generates three fluorophores for each single fluoride released. A two-step integrated protocol creates a more rapid autoinductive cascade than previously reported, as well as a highly sensitive diagnostic assay for the ultratrace quantitation of a phosphoryl fluoride nerve agent surrogate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b01008DOI Listing

Publication Analysis

Top Keywords

autoinductive cascade
12
fluoride
8
phosphoryl fluoride
8
fluoride nerve
8
cascade optical
4
optical sensing
4
sensing fluoride
4
fluoride application
4
application detection
4
detection phosphoryl
4

Similar Publications

The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management.

View Article and Find Full Text PDF

FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-β autoinduction.

Int J Biochem Cell Biol

November 2017

Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.

Bone-derived fibroblast growth factor 23 (FGF23) is an important endocrine regulator of mineral homeostasis with effects transduced by cognate FGF receptor (FGFR)1-α-Klotho complexes. Circulating FGF23 levels rise precipitously in patients with kidney disease and portend worse renal and cardiovascular outcomes. De novo expression of FGF23 has been found in the heart and kidney following injury but its significance remains unclear.

View Article and Find Full Text PDF

A new auto-inductive protocol employs a Meldrum's-acid-based conjugate acceptor (1) as a latent source of thiol for signal amplification, as well as optical detection of thiols. The auto-induction is initiated by a thiol-disulfide exchange that leads to the generation of β-mercaptoethanol, which in turn decouples the conjugate acceptor to release more thiols, resulting in a self-propagating cycle that continues until all the conjugate acceptor is consumed. Using 1 in a two-step integrated protocol yields a rapid, sensitive, and precise diagnostic assay for the ultratrace quantitation of a thiophosphate nerve agent surrogate.

View Article and Find Full Text PDF

A new autoinductive cascade employing benzoyl fluoride as a latent source of fluoride is reported for signal amplification and optical detection of fluoride. The autoinduction leads to a maximum 4-fold signal enhancement for each fluoride generated, as well as a self-propagating cycle that generates three fluorophores for each single fluoride released. A two-step integrated protocol creates a more rapid autoinductive cascade than previously reported, as well as a highly sensitive diagnostic assay for the ultratrace quantitation of a phosphoryl fluoride nerve agent surrogate.

View Article and Find Full Text PDF

Apoptosis signal-regulating kinase 1 (ASK1) is a mediator of the MAPK signaling cascade, which regulates different cellular processes including apoptosis, cell survival, and differentiation. The increased activity of ASK1 is associated with a number of human diseases and this protein kinase is considered as promising therapeutic target. In the present study, the kinase domain of human ASK1 was expressed in Escherichia coli (E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!