Tin (Sn) is known to be a good catalyst for electrochemical reduction of CO to formate in 0.5 M KHCO. But when a thin layer of SnO is coated over Cu nanoparticles, the reduction becomes Sn-thickness dependent: the thicker (1.8 nm) shell shows Sn-like activity to generate formate whereas the thinner (0.8 nm) shell is selective to the formation of CO with the conversion Faradaic efficiency (FE) reaching 93% at -0.7 V (vs reversible hydrogen electrode (RHE)). Theoretical calculations suggest that the 0.8 nm SnO shell likely alloys with trace of Cu, causing the SnO lattice to be uniaxially compressed and favors the production of CO over formate. The report demonstrates a new strategy to tune NP catalyst selectivity for the electrochemical reduction of CO via the tunable core/shell structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b00261 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
LiFePO (LFP) typically requires a conductive additive to improve its low ion and electron conductivity. In this study, we achieved significant enhancements in Li and electron mobility by applying a minimal amount of conductive material through a new coating process. The coin cell demonstrated an excellent capacity of 157.
View Article and Find Full Text PDFEES Catal
December 2024
Department of Chemical Engineering, Delft University of Technology 2629 HZ Delft The Netherlands
Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFGreen Chem
January 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!