The biokinetics of a size-selected fraction (70 nm median size) of commercially available and V-radiolabeled [V]TiO nanoparticles has been investigated in healthy adult female Wistar-Kyoto rats at retention time-points of 1 h, 4 h, 24 h, 7 d and 28 d after intratracheal instillation of a single dose of an aqueous [V]TiO-nanoparticle suspension. A completely balanced quantitative biodistribution in all organs and tissues was obtained by applying typical [V]TiO-nanoparticle doses in the range of 40-240 μg·kg bodyweight and making use of the high sensitivity of the radiotracer technique. The [V]TiO-nanoparticle content was corrected for residual blood retained in organs and tissues after exsanguination and for V-ions not bound to TiO-nanoparticles. About 4% of the initial peripheral lung dose passed through the air-blood-barrier after 1 h and were retained mainly in the carcass (4%); 0.3% after 28 d. Highest organ fractions of [V]TiO-nanoparticles present in liver and kidneys remained constant (0.03%). [V]TiO-nanoparticles which entered across the gut epithelium following fast and long-term clearance from the lungs via larynx increased from 5 to 20% of all translocated/absorbed [V]TiO-nanoparticles. This contribution may account for 1/5 of the nanoparticle retention in some organs. After normalizing the fractions of retained [V]TiO-nanoparticles to the fraction that reached systemic circulation, the biodistribution was compared with the biodistributions determined after IV-injection (Part 1) and gavage (GAV) (Part 2). The biokinetics patterns after IT-instillation and GAV were similar but both were distinctly different from the pattern after intravenous injection disproving the latter to be a suitable surrogate of the former applications. Considering that chronic occupational inhalation of relatively biopersistent TiO-particles (including nanoparticles) and accumulation in secondary organs may pose long-term health risks, this issue should be scrutinized more comprehensively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17435390.2017.1306894 | DOI Listing |
Environ Pollut
January 2025
School of Medicine, Taizhou University, Taizhou 318000, China.
Allergic asthma is a significant international concern in respiratory health, which can be exacerbated by the increasing levels of non-allergenic pollutants. This rise in airborne pollutants is a primary driver behind the growing prevalence of asthma, posing a health emergency. Additionally, climatic risk factors can contribute to the onset and progression of asthma.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
National Research Centre for the Working Environment, Copenhagen, Denmark.
Background: Inhalation exposure is the gold standard when assessing pulmonary toxicity. However, it typically requires substantial amounts of test material. Intratracheal instillation is an alternative administration technique, where the test substance is suspended in a liquid vehicle and deposited into the lung via the trachea.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei 230032, China. Electronic address:
A mounting number of studies have been documenting strong pro-inflammatory and pro-fibrotic effects of carbon nanotube (CNT). However, the molecular mechanisms of single-walled CNT (SWCNT)-provoked lung injury remain to be elucidated. Here, we established a mice model of SWCNT-induced lung injury by intratracheal instillation and found that C5a-C5a receptor-1 (C5aR1) signaling was significantly activated along with abundant neutrophils recruitment in lungs at early phase post SWCNT administration, which were positively correlated with early lung inflammation and late pulmonary fibrosis.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Veterinary Emergency and Critical Care Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
Background/aim: Acute lung injury (ALI) is an important pathological process in acute respiratory distress syndrome; however, feasible and effective treatment strategies for ALI are limited. Recent studies have suggested that stem cell-derived exosomes can ameliorate ALI; however, there remains no consensus on the protocols used, including the route of administration. This study aimed to identify the appropriate route of administration of canine stem cell-derived exosomes (cSC-Exos) in ALI.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!