Quantitative assessment of the impact of cross-contamination during the washing step of ready-to-eat leafy greens on the risk of illness caused by Salmonella.

Food Res Int

Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, 08901-8520 New Brunswick, NJ, USA. Electronic address:

Published: February 2017

The aim of this study was to develop a quantitative microbial risk assessment (QMRA) model to estimate the risk of illness caused by Salmonella in ready-to-eat (RTE) leafy greens, based on common practices in Brazilian processing plants. The risk assessment model considered five modules: in field, washing step, retail storage, home storage and dose-response. Fifty thousand iterations of a @Risk model built in Excel were run for each of sixty scenarios. These scenarios considered different initial pathogen concentrations, fractions of contaminated produce and chlorine concentrations. For chlorine, seven pre-set concentrations (0, 5, 10, 25, 50, 150 and 250mg/L) and three triangular distributions were considered [RiskTriang(0,5,10mg/L), RiskTriang(0,80,250mg/L) and RiskTriang(10,120,250mg/L)]. The outputs were risk of infection, estimated number of illnesses and estimated percent of illnesses arising from cross-contamination. The QMRA model indicated quantitatively that higher chlorine concentrations resulted in lower risk of illness. When simulation was done with <5mg/L of chlorine, most (>96%) of the illnesses arose from cross-contamination, but when a triangular distribution with 10, 120 and 250mg/L of chlorine was simulated, no illnesses arising from cross-contamination were predicted. Proper control of the sanitizer in the washing step is essential to reduce initial contamination and avoid cross-contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2016.12.014DOI Listing

Publication Analysis

Top Keywords

washing step
12
risk illness
12
leafy greens
8
illness caused
8
caused salmonella
8
risk assessment
8
qmra model
8
chlorine concentrations
8
illnesses arising
8
arising cross-contamination
8

Similar Publications

Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .

View Article and Find Full Text PDF

Further Evidence That Female (Coleoptera: Cerambycidae) Utilizes Photo-Degradation to Produce Volatiles That Are Attractive to Adult Males.

Insects

November 2024

Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 West Truck Road, Buzzards Bay, MA 02542, USA.

The Asian longhorned beetle, (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring has been hindered by the fact that mate finding involves a rather complex series of behaviors and responses to several chemical (and visual), cues. Adults (female-biased) locate a tree via host kairomones.

View Article and Find Full Text PDF

First Report of Charcoal Rot Caused by of Sweet Potato in Southern China.

Plant Dis

January 2025

Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;

Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).

View Article and Find Full Text PDF

Waste generated during asbestos manufacturing contains substantial quantities of iron, nickel, magnesium, and silicon. The existing techniques for processing chrysotile-asbestos waste (CAW) cannot fully recover these elements. Therefore this paper presents a hydrometallurgical method for processing the CAW of the Zhitikara deposit in the Kostanay region of Kazakhstan.

View Article and Find Full Text PDF

Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!