Diagnosis of toxoplasmosis in pregnancy. Evaluation of latex-protein complexes by immnunoagglutination.

Parasitology

INTEC (Universidad Nacional del Litoral and CONICET),Santa Fe (3000),Argentina.

Published: July 2017

The aim of this work was to obtain a reagent based on latex particles for ruling out acute toxoplasmosis in pregnant women by immunoagglutination (IA). Latex-protein complexes (LPC) were previously synthesized coupling the recombinant protein of Toxoplasma gondii P22Ag and the homogenate of the parasite to latex particles with different size, chemical functionality and charge density. LPC were tested in IA assays against a panel of 72 pregnant women serum samples. Results were analysed through receiver operating characteristic curves, determining area under the curve (AUC), sensitivity, specificity positive and negative predictive values (PPV and NPV, respectively). It was observed that the antigenicity of proteins was not affected during sensitization by either physical adsorption or covalent coupling. The best results in the sense of maximizing discrimination of low avidity sera from chronic ones were observed for the IA test based on latex particles with carboxyl functionality and the recombinant P22Ag, obtaining an AUC of 0·94, a sensitivity of 100% and a NPV of 100%. In this way, the proposed test could be useful for the toxoplasmosis diagnosis in pregnant women, with the advantages of being cheap, rapid and easy to be implemented.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0031182017000294DOI Listing

Publication Analysis

Top Keywords

latex particles
12
pregnant women
12
latex-protein complexes
8
based latex
8
diagnosis toxoplasmosis
4
toxoplasmosis pregnancy
4
pregnancy evaluation
4
evaluation latex-protein
4
complexes immnunoagglutination
4
immnunoagglutination aim
4

Similar Publications

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Preparation of Colored Polymer Microspheres.

Molecules

January 2025

College of New Energy and Materials, China University of Petroleum, Beijing 102249, China.

Colored polymer microspheres have attracted significant attention in both academia and industry due to their unique optical properties and extensive application potential. However, achieving a uniform distribution of dyes within these microspheres remains a challenge, particularly when heavy concentrations of dye are used, as this can lead to aggregation or delamination, adversely affecting their application. Additionally, many dyes are prone to degradation or fading when exposed to light, heat, or chemicals, which compromises the long-term color stability of the microspheres.

View Article and Find Full Text PDF

Laminated Two-Terminal All-Perovskite Tandem Solar Cells with Transparent Conductive Adhesives.

ACS Appl Mater Interfaces

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.

Established sequential deposition of multilayer two-terminal (2T) all-perovskite tandem solar cells possesses challenges for fabrication and limits the choice of materials and device architecture. In response, this work represents a lamination process based on a transparent and conductive adhesive that interconnects the wide-bandgap (WBG) perovskite top solar cell and the narrow-bandgap (NBG) perovskite bottom solar cell in a monolithic 2T all-perovskite tandem solar cell. The transparent conductive adhesive (TCA) layer combines Ag-coated poly(methyl methacrylate) microspheres with an optical adhesive.

View Article and Find Full Text PDF

Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.

View Article and Find Full Text PDF

Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:

Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!