Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus () plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380084 | PMC |
http://dx.doi.org/10.1073/pnas.1701328114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!