Unlabelled: Calcium phosphate cements (CPCs) are applied as bone cements due to their excellent biocompatibility. In the present study, the quantitative phase content development during hydration of partially amorphized β-tricalcium phosphate (β-TCP) within the first 24h was investigated by in-situ X-ray diffraction (XRD) combined with the G-factor method, an external standard method. The quantity of amorphous phase (ATCP) in the powders was determined by the G-factor method. The hydration model established for partially amorphized β-TCP indicates that ATCP reacted first, followed by the hydration of a small fraction of crystalline β-TCP starting after some h. Consequently, hydration resulted in biphasic samples composed of calcium deficient hydroxyapatite (CDHA) and crystalline β-TCP. The ratio wt%(CDHA)/wt%(β-TCP) after 24h hydration was adjustable by the initial ATCP content. The crystallinity of CDHA was nearly independent of the ATCP content. Since the biological degradability of CDHA and β-TCP differ, the degradation performance of the set cements is expected to be adjustable by varying the ATCP content. The present study provided a basic understanding of the hydration mechanism of partially amorphized β-TCP, which is the prerequisite for the development of applicable CPC formulations.

Statement Of Significance: Calcium phosphate cements (CPCs) are medically applied for bone repair due to their excellent biocompatibility. β-Tricalcium phosphate (β-TCP), which is hardly reactive in water in its crystalline state, was previously shown to be activatable by partial amorphization. This provides potential for the development of new CPCs setting to biphasic samples composed of β-TCP and calcium deficient hydroxyapatite (CDHA). The degradation performance of these cements is expected to be adjustable by varying the ratio of CDHA to β-TCP. In the present study, the so far unknown setting mechanism of partially amorphized β-TCP was investigated in detail. The results contribute to the basic understanding of the hydration of partially amorphized β-TCP, which is important for the targeted development of new cement formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2017.03.013DOI Listing

Publication Analysis

Top Keywords

partially amorphized
24
amorphized β-tcp
16
mechanism partially
12
β-tricalcium phosphate
12
atcp content
12
β-tcp
11
hydration
8
hydration mechanism
8
amorphized β-tricalcium
8
calcium phosphate
8

Similar Publications

Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges.

View Article and Find Full Text PDF

Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns.

View Article and Find Full Text PDF

Melting Behavior of Compression Molded Poly(ester amide) from 2,5-Furandicarboxylic Acid.

Polymers (Basel)

December 2024

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Nickel pyrovanadate (NVO) and reduced graphene oxide (rGO) are synthesized together using a solvothermal method, resulting in a crystalline NVO structure and amorphous rGO within the nanocomposite.
  • The formation of a hollow nanosphere shape for NVO is observed, which improves surface area and electrochemical stability due to the rGO incorporation.
  • The NVO@rGO 20 composite achieves a specific capacitance of 3807 F/g and retains about 70% of its capacitance after 10,000 cycles, making it a promising candidate for high-performance energy storage devices.
View Article and Find Full Text PDF

The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!