Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning.

Neurobiol Learn Mem

Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA. Electronic address:

Published: May 2017

Associative learning can enable environmental cues to signal food and stimulate feeding, independent of physiological hunger. Two forebrain regions necessary in cue driven feeding, the basolateral area of the amygdala and the medial prefrontal cortex, communicate via extensive, topographically organized connections. The basolateral nucleus (BLA) sends extensive projections to the prelimbic cortex (PL), and our aim here was to determine if this pathway was selectively recruited during cue-food associative learning. The anterior and posterior basolateral nuclei are recruited during different phases of cue-food learning, and thus we examined whether distinct pathways that originate in these nuclei and project to the PL are differently recruited during early and late stages of learning. To accomplish this we used neuroanatomical tract tracing combined with the detection of Fos induction. To identify projecting neurons within the BLA, prior to training, rats received a retrograde tracer, Fluoro-Gold (FG) into the PL. Rats were given either one or ten sessions of tone-food presentations (Paired group) or tone-only presentations (Control group). The Paired group learned the tone-food association quickly and robustly and had greater Fos induction within the anterior and posterior BLA during early and late learning compared to the Control group. Notably, the Paired group had more double-labeled neurons (FG + Fos) during late training compared to the Control group, specifically in the anterior BLA. This demonstrates selective recruitment of the anterior BLA-PL pathway by late cue-food learning. These findings indicate plasticity and specificity in the BLA-PL pathways across cue-food associative learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494146PMC
http://dx.doi.org/10.1016/j.nlm.2017.03.006DOI Listing

Publication Analysis

Top Keywords

associative learning
12
paired group
12
control group
12
prefrontal cortex
8
cue-food associative
8
anterior posterior
8
cue-food learning
8
early late
8
fos induction
8
compared control
8

Similar Publications

Assessing learning, behaviour, and stress level in goats while testing a virtual fencing training protocol.

Animal

December 2024

Venn Research Association for the Promotion of Virtual Fencing in Tyrol and the Alpine region. Brixnerstraße 1, 6020 Innsbruck, Austria.

Virtual fencing (VF) is a modern fencing technology using Global Positioning System-enabled collars which emit acoustic signals and, if the animal does not respond, electric pulses. Studies with cattle indicate successful learning and no distinct negative impact on the animals' behaviours and stress level. However, the number of studies testing VF with goats is relatively small.

View Article and Find Full Text PDF

Music generation by AI algorithms like Transformer is currently a research hotspot. Existing methods often suffer from issues related to coherence and high computational costs. To address these problems, we propose a novel Transformer-based model that incorporates a gate recurrent unit with root mean square norm restriction (TARREAN).

View Article and Find Full Text PDF

Cognitive mechanisms of aversive prediction error-induced memory enhancements.

J Exp Psychol Gen

January 2025

Department of Cognitive Psychology, Institute of Psychology, Universitat Hamburg.

While prediction errors (PEs) have long been recognized as critical in associative learning, emerging evidence indicates their significant role in episodic memory formation. This series of four experiments sought to elucidate the cognitive mechanisms underlying the enhancing effects of PEs related to aversive events on memory for surrounding neutral events. Specifically, we aimed to determine whether these PE effects are specific to predictive stimuli preceding the PE or if PEs create a transient window of enhanced, unselective memory formation.

View Article and Find Full Text PDF

Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.

View Article and Find Full Text PDF

Memory consolidation from a reinforcement learning perspective.

Front Comput Neurosci

January 2025

Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.

Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!