The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small-molecule MRGPRX2 agonists, selective nanomolar-potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found that many opioid compounds activated MRGPRX2, including (-)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan, and the prodynorphin-derived peptides dynorphin A, dynorphin B, and α- and β-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573-a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases-along with an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line, inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391270PMC
http://dx.doi.org/10.1038/nchembio.2334DOI Listing

Publication Analysis

Top Keywords

small molecules
8
mast cell
8
mrgprx2
7
silico design
4
design novel
4
novel probes
4
probes atypical
4
atypical opioid
4
opioid receptor
4
receptor mrgprx2
4

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer.

View Article and Find Full Text PDF

DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer.

Acta Pharm Sin B

December 2024

Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.

encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!