The photoplethysmographic (PPG) signal measures the local variations of blood volume in tissues, reflecting the peripheral pulse modulated by cardiac activity, respiration, and other physiological effects. Therefore, PPG can be used to extract the vital cardiorespiratory signals like heart rate (HR), and respiratory rate (RR) and this will reduce the number of sensors connected to the patient's body for recording these vital signs. In this paper, we propose an algorithm based on ensemble empirical mode decomposition with principal component analysis (EEMD-PCA) as a novel approach to estimate HR and RR simultaneously from PPG signal. To examine the performance of the proposed algorithm, we used 310 (from 35 subjects) and 632 (from 42 subjects) epochs of simultaneously recorded electrocardiogram, PPG, and respiratory signal extracted from MIMIC (Physionet ATM data bank) and Capnobase database, respectively. Results of EEMD-PCA-based extraction of HR and RR from PPG signal showed that the median RMS error (1st and 3rd quartiles) obtained in MIMIC data set for RR was 0.89 (0, 1.78) breaths/min, for HR was 0.57 (0.30, 0.71) beats/min and in Capnobase data set it was 2.77 (0.50, 5.9) breaths/min and 0.69 (0.54, 1.10) beats/min for RR and HR, respectively. These results illustrated that the proposed EEMD-PCA approach is more accurate in estimating HR and RR than other existing methods. Efficient and reliable extraction of HR and RR from the pulse oximeter's PPG signal will help patients for monitoring HR and RR with low cost and less discomfort.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2017.2679108DOI Listing

Publication Analysis

Top Keywords

ppg signal
16
ensemble empirical
8
empirical mode
8
mode decomposition
8
decomposition principal
8
principal component
8
component analysis
8
novel approach
8
respiratory rate
8
heart rate
8

Similar Publications

Wearable Solutions Using Physiological Signals for Stress Monitoring on Individuals with Autism Spectrum Disorder (ASD): A Systematic Literature Review.

Sensors (Basel)

December 2024

REMIT (Research on Economics, Management and Information Technologies), IJP (Instituto Jurídico Portucalense), Universidade Portucalense, Rua Dr. António Bernardino de Almeida, 541-619, 4200-072 Porto, Portugal.

Some previous studies have focused on using physiological signals to detect stress in individuals with ASD through wearable devices, yet few have focused on how to design such solutions. Wearable technology may be a valuable tool to aid parents and caregivers in monitoring the emotional states of individuals with ASD who are at high risk of experiencing very stressful situations. However, effective wearable devices for individuals with ASD may need to differ from solutions for those without ASD.

View Article and Find Full Text PDF

Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-invasive alternative for estimating blood glucose levels. In this study, we propose an innovative 1-second signal segmentation method and evaluate the performance of three advanced deep learning models using a novel dataset to estimate blood glucose levels from PPG signals.

View Article and Find Full Text PDF

Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample.

View Article and Find Full Text PDF

Introduction: Vascular access (VA) is essential for patients with hemodialysis, and its dysfunction is a major complication that can reduce quality of life or even threaten life. VA patency is not only difficult to predict on an individual basis, but also challenging to predict in real-time. To overcome this challenge, this study aimed to develop a machine learning approach to predict 6-month primary patency (PP) using photoplethysmography (PPG) signals acquired from the tips of both index fingers.

View Article and Find Full Text PDF

In the early stages of atrial fibrillation (AF), most cases are paroxysmal (pAF), making identification only possible with continuous and prolonged monitoring. With the advent of wearables, smartwatches equipped with photoplethysmographic (PPG) sensors are an ideal approach for continuous monitoring of pAF. There have been numerous studies demonstrating successful capture of pAF events, especially using deep learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!