Despite decades of investigation, the neuronal and molecular bases of motivational states remain mysterious. We have recently developed a novel, reductionist, and scalable system for in-depth investigation of motivation using the mating drive of male Drosophila melanogaster (Drosophila), the methods for which we detail here. The behavioral paradigm centers on the finding that male mating drive decreases alongside fertility over the course of repeated copulations and recovers over ~3 d. In this system, the powerful neurogenetic tools available in the fly converge with the genetic accessibility and putative wiring diagram available for sexual behavior. This convergence allows rapid isolation and interrogation of small neuronal populations with specific motivational functions. Here we detail the design and execution of the satiety assay that is used to measure and alter courtship motivation in the male fly. Using this assay, we also demonstrate that low male mating drive can be overcome by stimulating dopaminergic neurons. The satiety assay is simple, affordable, and robust to influences of genetic background. We expect the satiety assay to generate many new insights into the neurobiology of motivational states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408922PMC
http://dx.doi.org/10.3791/55291DOI Listing

Publication Analysis

Top Keywords

mating drive
16
satiety assay
12
drive male
8
motivational states
8
male mating
8
male
5
measuring altering
4
mating
4
altering mating
4
drive
4

Similar Publications

Background: The magnitude of inbreeding depression depends on the recessive burden of the individual, which can be traced back to the hidden (recessive) inbreeding load among ancestors. However, these ancestors carry different alleles at potentially deleterious loci and therefore there is individual variability of this inbreeding load. Estimation of the additive genetic value for inbreeding load is possible using a decomposition of inbreeding in partial inbreeding components due to ancestors.

View Article and Find Full Text PDF

Emergence of fungal hybrids - potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, INDIA. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

The social complexity hypothesis suggests that complex social interactions drive the evolution of sophisticated communicative signals. While the relationship between social communication and the complexity of sound and color signals has been extensively studied, the correlation between social communication and movement-based visual signal complexity remains underexplored. In this study, we selected the Asian agamid lizard, , as our model system.

View Article and Find Full Text PDF

End of the Season Blues: Senescence and Reproductive Trade-Offs in Male Scorpions.

Insects

November 2024

Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Av. Vélez Sarsfield 299, Córdoba X5000, Argentina.

Seasonal reproductive dynamics and senescence have profound impacts on male fertility, yet these processes remain understudied in scorpions. This study investigates how reproductive parameters-such as testicular mass, sperm quantity, and viability-change over the course of the reproductive season in males. We found that early-season males exhibited higher sperm quality and testicular mass compared to their older counterparts, suggesting that senescence, rather than reproductive effort, drives the decline in sperm viability.

View Article and Find Full Text PDF

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!