A facile method for the preparation of polycarbodiimide-based secondary structures (e.g., nano-rings, "craters," fibers, looped fibers, fibrous networks, ribbons, worm-like aggregates, toroidal structures, and spherical particles) is described. These aggregates are morphologically influenced by extensive hydrophobic side chain-side chain interactions of the singular polycarbodiimide strands, as inferred by atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. Polycarbodiimide-g-polystyrene copolymers (PS-PCDs) were prepared by a combination of synthetic methods, including coordination-insertion polymerization, copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) "click" chemistry, and atom transfer radical polymerization (ATRP). PS-PCDs were found to form specific toroidal architectures at low concentrations in CHCl3. To determine the influence of a more polar solvent medium (i.e., THF and THF/EtOH) on polymer aggregation behavior, a number of representative PS-PCD composites have been tested to show discrete concentration-dependent spherical particles. These fundamental studies are of practical interest to the development of experimental procedures for desirable architectures by directed self-assembly in thin film. These architectures may be exploited as drug carriers, whereas other morphological findings represent certain interest in the area of novel functional materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408759 | PMC |
http://dx.doi.org/10.3791/55124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!