B cells reactive with a specific antigen usually occur at a frequency of <0.05% of lymphocytes. For decades researchers have sought methods to isolate and enrich these rare cells for studies of their phenotype and biology. Approaches are inevitably based on the principle that B cells recognize native antigen by virtue of cell surface receptors that are representative in specificity of antibodies that will eventually be secreted by their differentiated daughters. Perhaps the most obvious approach to the problem involves use of fluorochrome-conjugated antigens in conjunction with fluorescence-activated cell sorting (FACS). However, the utility of these methods is limited by cell frequency and the achievable rate of analysis and isolation by electronic sorting. A novel method to enrich rare antigen-specific B cells using magnetic nanoparticles that results in high yield enrichment of antigen-reactive B cells from large starting cell populations is described. This method enables improved monitoring of the phenotype and biology of antigen reactive cells before and following in vivo antigen encounter, such as after immunization or during development of autoimmunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409333PMC
http://dx.doi.org/10.3791/55382DOI Listing

Publication Analysis

Top Keywords

detection enrichment
4
enrichment rare
4
rare antigen-specific
4
antigen-specific cells
4
cells analysis
4
analysis phenotype
4
phenotype function
4
function cells
4
cells reactive
4
reactive specific
4

Similar Publications

Construction of Immune Single Domain Antibodies Library for Development of Specific Nanobodies Using Phage Display Strategy.

Recent Pat Biotechnol

January 2025

Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.

Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.

Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Object: We aim to explore the immunomodulatory properties of T cells on different titanium nanotubes and the key immunological factors involved in this process.

Methods: Transcriptome data from GEO database of healthy people and healthy implants were used to analyze cell infiltration and factor distribution of adaptive immune using bioinformatics tools. T cells from activated rat were cultured on titanium nanotubes that were prepared by anodization with different diameters (P-0, NT15-30 nm, NT40-100 nm, NT70-200 nm).

View Article and Find Full Text PDF

Distribution and functional significance of KLF15 in mouse cerebellum.

Mol Brain

January 2025

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.

Kruppel-like factor 15 (KLF15), a member of the KLF family, is closely involved in many biological processes. However, the mechanism by which KLF15 regulates neural development is still unclear. Considering the complexity and importance of neural network development, in this study, we investigated the potent regulatory role of KLF15 in neural network development.

View Article and Find Full Text PDF

Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!