Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell-independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373877 | PMC |
http://dx.doi.org/10.1172/JCI91192 | DOI Listing |
ACS Nano
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States.
Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity.
View Article and Find Full Text PDFVaccine
January 2025
Respiratory Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, United States.
Background: Streptococcus pneumoniae is an important cause of pneumonia, sepsis, and meningitis, which are leading causes of child mortality. Pneumococcal conjugate vaccines (PCVs) protect against disease and nasopharyngeal colonization with vaccine serotypes, reducing transmission to and among unvaccinated individuals. Mozambique introduced 10-valent PCV (PCV10) in 2013.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:
Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.
View Article and Find Full Text PDFVaccine
January 2025
Department of Pediatrics, Section of Infectious Diseases and Global Health, Yale University School of Medicine, New Haven, CT, United States; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States; Yale Institute for Global Health, Yale University, New Haven, CT, United States; Yale Center for Infection and Immunity, Yale University, New Haven, CT, United States. Electronic address:
Background: Pneumococcal conjugate vaccines (PCV) reduced invasive disease, but the overall prevalence of pneumococcal nasopharyngeal colonization among children has not changed significantly. Our knowledge of which serotypes, once colonized, hold a higher likelihood to cause invasive disease is limited.
Methods: Serotype-specific invasive capacity (IC) of Streptococcus pneumoniae was estimated using an enhanced population-based invasive pneumococcal disease (IPD) surveillance in children <7 years of age in Massachusetts and surveillance of nasopharyngeal (NP) colonization in selected Massachusetts communities in corresponding respiratory seasons.
Before October 2024, the Advisory Committee on Immunization Practices (ACIP) recommended use of a pneumococcal conjugate vaccine (PCV) for all adults aged ≥65 years, as well as for those aged 19-64 years with risk conditions for pneumococcal disease who have not received a PCV or whose vaccination history is unknown. Options included either 20-valent PCV (PCV20; Prevnar20; Wyeth Pharmaceuticals) or 21-valent PCV (PCV21; CAPVAXIVE; Merck Sharp & Dohme) alone or 15-valent PCV (PCV15; VAXNEUVANCE; Merck Sharp & Dohme) in series with 23-valent pneumococcal polysaccharide vaccine (PPSV23; Pneumovax23; Merck Sharp & Dohme). There are additional recommendations for use of PCV20 or PCV21 for adults who started their pneumococcal vaccination series with 13-valent PCV (PCV13; Prevnar13; Wyeth Pharmaceuticals).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!