Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and functions through two distinct complexes, mTOR complex 1 (mTORC1) and complex 2 (mTORC2), with their key components Raptor and Rictor, to play crucial roles in cellular survival and growth. However, the roles of mTORC1 and mTORC2 in regulating cardiomyocyte differentiation from mouse embryonic stem (mES) cells are not clear. In this study, we performed Raptor or Rictor knockdown experiments to investigate the roles of mTORC1 and mTORC2 in cardiomyocyte differentiation. Ablation of Raptor markedly increased the number of cardiomyocytes derived from mES cells with well-organized myofilaments. Expression levels of brachyury (mesoderm protein), Nkx2.5 (cardiac progenitor cell protein), and α-Actinin (cardiomyocyte marker) were increased in Raptor knockdown cells. In contrast, loss of Rictor prevented cardiomyocyte differentiation. The dual ablation of Raptor and Rictor also decreased the number of cardiomyocytes. The two complexes exerted a regulatory mechanism in such a manner that knockdown of Raptor/mTORC1 resulted in a decreased phosphorylation of Rictor (Thr1135), which subsequently activated Rictor/mTORC2 in the differentiation of mES cells into cardiomyocytes. In conclusion, mTORC1 and mTORC2 played different roles in cardiomyocyte differentiation from mES cells in vitro. The activation of Rictor/mTORC2 was critical for facilitating cardiomyocyte differentiation from mES cells. Thus, this complex may be a promising target for regulating myocardial differentiation from embryonic stem cells or induced pluripotent stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1387/ijdb.160207dz | DOI Listing |
Acta Physiol (Oxf)
February 2025
Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes.
View Article and Find Full Text PDFJ Clin Med
December 2024
Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy.
Despite notable advancements in cardiovascular medicine, morbidity and mortality rates associated with myocardial infarction (MI) remain high. The unfavourable prognosis and absence of robust post-MI protocols necessitate further intervention. In this comprehensive review, we will focus on well-established and novel biomarkers that can provide insight into the processes that occur after an ischemic event.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.
Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.
Dev Growth Differ
January 2025
Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Sonic Hedgehog (Shh), encoding an extracellular signaling molecule, is vital for heart development. Shh null mutants show congenital heart disease due to left-right asymmetry defects stemming from functional anomaly in the midline structure in mice. Shh signaling is also known to affect cardiomyocyte differentiation, endocardium development, and heart morphogenesis, particularly in second heart field (SHF) cardiac progenitor cells that contribute to the right ventricle, outflow tract, and parts of the atrium.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!