Dithiolato-bridged nickel-iron complexes as models for the active site of [NiFe]-hydrogenases.

Chem Commun (Camb)

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

Published: March 2017

The structural and functional modeling of the active site of [NiFe]-hydrogenases has been proved to be challenging to a great extent. Herein, we report the synthesis, structures, and some properties of the NiFe-based dicarbonyl, terminal hydride, and μ-hydroxo models for the active site of [NiFe]-hydrogenases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc00149eDOI Listing

Publication Analysis

Top Keywords

active site
12
site [nife]-hydrogenases
12
models active
8
dithiolato-bridged nickel-iron
4
nickel-iron complexes
4
complexes models
4
[nife]-hydrogenases structural
4
structural functional
4
functional modeling
4
modeling active
4

Similar Publications

Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.

View Article and Find Full Text PDF

Turning waste into wealth: Enzyme-activated DNA sensor based on reactant recycle for spatially selective imaging microRNA toward target cells.

Anal Chim Acta

February 2025

Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:

Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.

View Article and Find Full Text PDF

Background: Magnetic resonance-guided transurethral ultrasound ablation (MR-TULSA) is a new focal therapy for treating localised prostate cancer that is associated with fewer adverse effects (AEs) compared with established treatments. To support large-scale clinical implementation, information about cost-effectiveness is required.

Objective: To evaluate the cost-utility of MR-TULSA compared with robot-assisted radical prostatectomy (RARP), external beam radiation therapy (EBRT) and active surveillance (AS) for patients with low- to favourable intermediate-risk localised prostate cancer.

View Article and Find Full Text PDF

A facile assay for zDHHC palmitoyl transferase activation elucidates effects of mutation and modification.

J Lipid Res

January 2025

Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan. Electronic address:

At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies.

View Article and Find Full Text PDF

Functional characterization and protein engineering of a O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis of Stephania tetrandra.

Int J Biol Macromol

January 2025

Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:

Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!