Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bilayer graphene (BLG) shows great potential as a new material for opto-electronic devices because its bandgap can be controlled by varying the stacking orders, as well as by applying an external electric field. An imaging technique that can visualize and characterize various stacking domains in BLG may greatly help in fully utilizing such properties of BLG. Here we demonstrate that infrared (IR) scattering-type scanning near-field optical microscopy (sSNOM) can visualize Bernal and non-Bernal stacking domains of BLG, based on the stacking-specific inter- and intra-band optical conductivities. The method enables nanometric mapping of stacking domains in BLG on dielectric substrates, augmenting current limitations of Raman spectroscopy and electron microscopy techniques for the structural characterization of BLG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr00713b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!