SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking.

Sci Rep

Applied Quantum Architectures, Department of Quantum Engineering, TU Delft, Netherlands.

Published: March 2017

AI Article Synopsis

  • sCMOS imagers are being replaced by SPAD imagers in super resolution localization microscopy due to their higher acquisition speeds and superior frame rates.
  • SPAD imagers produce microsecond 1-bit frames without readout noise, enabling detailed time-resolved analyses and optimization of fluorescent dyes' photophysical properties.
  • The introduction of microlenses has significantly improved SPAD imager sensitivity, allowing for high-resolution imaging results (20 nm localization uncertainty and 80 nm resolution) in super resolution microscopy.

Article Abstract

sCMOS imagers are currently utilized (replacing EMCCD imagers) to increase the acquisition speed in super resolution localization microscopy. Single-photon avalanche diode (SPAD) imagers feature frame rates per bit depth comparable to or higher than sCMOS imagers, while generating microsecond 1-bit-frames without readout noise, thus paving the way to in-depth time-resolved image analysis. High timing resolution can also be exploited to explore fluorescent dye blinking and other photophysical properties, which can be used for dye optimization. We present the methodology for the blinking analysis of fluorescent dyes on experimental data. Furthermore, the recent use of microlenses has enabled a substantial increase of SPAD imager overall sensitivity (12-fold in our case), reaching satisfactory values for sensitivity-critical applications. This has allowed us to record the first super resolution localization microscopy results obtained with a SPAD imager, with a localization uncertainty of 20 nm and a resolution of 80 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347095PMC
http://dx.doi.org/10.1038/srep44108DOI Listing

Publication Analysis

Top Keywords

super resolution
12
resolution localization
12
localization microscopy
12
spad imagers
8
scmos imagers
8
spad imager
8
resolution
5
spad
4
imagers super
4
localization
4

Similar Publications

A novel super-resolution STED microscopy analysis approach to observe spatial MCU and MICU1 distribution dynamics in cells.

Biochim Biophys Acta Mol Cell Res

January 2025

Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:

The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.

View Article and Find Full Text PDF

The admixture model is widely applied to estimate and interpret population structure among individuals. Here we consider a "standard admixture" model that assumes the admixed populations are unrelated and also a generalized model, where the admixed populations themselves are related via coancestry (or covariance) of allele frequencies. The generalized model yields a potentially more realistic and substantially more flexible model that we call "super admixture".

View Article and Find Full Text PDF

Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.

View Article and Find Full Text PDF

Objectives: Shear-wave elastography (SWE) provides valuable stiffness within breast masses, making it a useful supplement to conventional ultrasound imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular visualization, aiding in the differential diagnosis of breast masses. Current clinical ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound.

View Article and Find Full Text PDF

Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!