Background: One of the working mechanisms of probiotic bacteria is their ability to compete with pathogens. To define the probiotic properties of seven Lactic Acid Bacteria (LAB) strains, we tested them for survival in simulated gastro-intestinal conditions, antimicrobial activities, co-aggregative abilities, and interferences studies against five human intestinal pathogens ( ATCC 13076, ATCC 7644, O157: H7 ATCC 35150, ATCC 29544 and ATCC 33291).
Results: The LAB strains were able to survive the stomach simulated conditions, and varied in their abilities to survive the small intestinal-simulated conditions. The strains showed antibiotic susceptibility profiles with values equal or below the breakpoints set by the European Food and Safety Authority. The LAB cell-free cultures supernatants showed antimicrobial activities, with inhibition zones ranging from 10.0 to 17.2 mm. All the LAB strains showed moderate auto-aggregation abilities while the greatest co-aggregation abilities were observed for W23, W21 and W71. The individual LAB strains showed strain-specific abilities to reduce the invasion of intestinal pathogens in an interference model with Caco-2 cells. Increased invasion inhibition was found when different combinations of LAB strains were used in the interference tests.
Conclusion: The LAB strains examined in this study may protect the intestinal epithelium through a series of barriers (antimicrobial activity, co-aggregation with pathogens, adherence) and interference mechanisms. Consequently, these LAB strains may be considered candidates for prophylactic use to prevent intestinal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338089 | PMC |
http://dx.doi.org/10.1186/s13099-017-0162-4 | DOI Listing |
RSC Adv
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Nasr City Cairo 11884 Egypt
In this study, a nanocomposite based on copper oxide-zinc oxide nanoparticles and Gum Arabic (GA@CuO-ZnO nanocomposite) was successfully synthesized using green method. Characterization results revealed that the prepared nanocomposite appeared at the nanoscale level, showed excellent dispersion, and formed stable colloidal nano-solutions. The bimetallic GA@CuO-ZnO nanocomposite was evaluated for its anticancer, antibacterial, and antifungal properties.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
Curr Microbiol
January 2025
Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
To investigate the bacterial community structure and physicochemical characteristics of different types of Daqu in the Binzhou region, this study employed traditional pure culture methods, high-throughput sequencing technology, and conventional physicochemical assays for analysis. The research results indicate that Enterococcus faecium and Bacillus licheniformis emerged as the main LAB and Bacillus species in Daqu from Binzhou region, respectively. In addition, high-throughput sequencing revealed significant differences in bacterial community structure between the two types of Daqu (P < 0.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Immunology Department, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Background: Therapeutic efficacy of carcinoembryonic antigen (CEA)-specific chimeric antigen receptor (CAR) T cells against colorectal cancer (CRC) remains limited due to the unique characteristics and distinct microenvironments of tumor tissues. We modified CEA-specific CAR-T cells, aiming to stimulate endogenous CD8 T cell responses against neoantigens that were derived from CEA-positive tumors destroyed by the CAR T cells.
Methods: In a conventional CEA CAR (reg-CAR), we modified it to express lymphotactin XCL1 and interleukin (IL)-7 genes, constructing a modified 7XCL1-CAR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!