A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic Architecture of Resistance to in : QTL Mapping Reveals Two Major Resistance-Conferring Loci. | LitMetric

AI Article Synopsis

  • A study focused on a necrotrophic fungal pathogen that causes blight in oilseed crops aimed to understand the genetic factors involved in plant defense against it.
  • Significant differences in how various plant accessions responded to the pathogen were found to be genetically based.
  • Researchers developed three mapping populations from resistant and susceptible accessions, identifying six quantitative trait loci (QTLs) linked to resistance, with varying effects across populations, highlighting the complexity and variability of genetic resistance.

Article Abstract

, a necrotrophic fungal pathogen, causes blight, one of the most important diseases of oleiferous crops. The current study utilized as a model to decipher the genetic architecture of defense against . Significant phenotypic variation that was largely genetically determined was observed among accessions in response to pathogen challenge. Three biparental mapping populations were developed from three resistant accessions viz. CIBC-5, Ei-2, and Cvi-0 and two susceptible accessions - Gre-0 and Zdr-1 (commonly crossed to CIBC-5 and Ei-2). A total of six quantitative trait locus (QTLs) governing resistance to were identified, five of which were population-specific while one QTL was common between all the three mapping populations. Interestingly, the common QTL had varying phenotypic contributions in different populations, which can be attributed to the genetic background of the parental accessions. The presence of both common and population-specific QTLs indicate that resistance to is quantitative, and that different genes may mediate resistance to the pathogen in different accessions. Two of the QTLs had moderate-to-large effects, one of which explained nearly 50% of the variation. The large effect QTLs may therefore contain genes that could play a significant role in conferring resistance even in heterologous hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323384PMC
http://dx.doi.org/10.3389/fpls.2017.00260DOI Listing

Publication Analysis

Top Keywords

genetic architecture
8
mapping populations
8
cibc-5 ei-2
8
resistance
5
accessions
5
architecture resistance
4
resistance qtl
4
qtl mapping
4
mapping reveals
4
reveals major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!