Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments.

Front Microbiol

HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany.

Published: February 2017

Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, , and increased in relative abundance in the chitin treatment, whereas , and increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5323390PMC
http://dx.doi.org/10.3389/fmicb.2017.00266DOI Listing

Publication Analysis

Top Keywords

organic matter
16
bacterial communities
8
deep-sea communities
8
strong changes
8
changes community
8
community activity
8
community structure
8
unfed control
8
16s rrna
8
community
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!