AI Article Synopsis

  • The study compares the antibacterial effects of copper-amino acid chelates with copper nanoparticles against specific bacteria, showing that the chelates have strong antimicrobial properties.
  • Copper-amino acids chelates were synthesized using soybean extract, while nanoparticles were derived from these chelates; both were tested using the microdilution method for their antibacterial effectiveness.
  • Results indicate that copper-amino acid chelates outperform traditional copper sources in specific applications, suggesting their potential for targeted use in combating bacterial infections.

Article Abstract

This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against , , and . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327766PMC
http://dx.doi.org/10.1155/2017/1064918DOI Listing

Publication Analysis

Top Keywords

copper nanoparticles
20
copper-amino acids
20
acids chelates
16
nanoparticles produced
8
antibacterial activity
8
copper
7
chelates
6
nanoparticles
5
copper-amino
5
acids
5

Similar Publications

Putrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.

View Article and Find Full Text PDF

Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Synergistically Enhanced Co-Adsorption of Reactant and Hydroxyl on Platinum-Modified Copper Oxide for High-Performance HMF Oxidation.

Adv Mater

January 2025

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.

Electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an environmentally friendly route for producing the sustainable polymer monomer 2,5-furandicarboxylic acid (FDCA). Thus, precisely adjusting the synergistic adsorption among key reactive species, such as HMF and OH, on the carefully designed catalyst surface is essential for achieving satisfactory catalytic performance for HMF oxidation to FDCA as it is closely related to the adsorption strength and configuration of the reaction substrates. This kind of regulation will ultimately facilitate the improvement of HMF oxidation performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!