MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor.

Life Sci

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Published: April 2017

Aims: Sigma-1 receptor (Sig-1R) is a ligand-regulated endoplasmic reticulum (ER) chaperone involved in cardiac hypertrophy, but it is not known whether Sig-1R is regulated by microRNAs (miRNAs). According to bioinformatic analysis, miR-297 was suggested as a potential target miRNA for Sig-1R. Therefore, we verified whether miR-297 could target Sig-1R and investigated the possible mechanisms underlying the role of miR-297 in cardiac hypertrophy.

Main Methods: Bioinformatic analysis combined with laboratory experiments, including quantitative RT-PCR, Western blotting, and luciferase assay, were performed to identify the target miRNA of Sig-1R. Transverse aortic constriction (TAC) model and neonatal rat cardiomyocytes (NCMs) stimulated with angiotensin II (AngII) were used to explore the relationship between miR-297 and Sig-1R. Additionally, the function of miR-297 in cardiomyocyte hypertrophy and ER stress/unfolded protein response (UPR) signaling pathway was investigated by transfecting miR-297 mimics/inhibitor.

Key Findings: miR-297 levels were increased in both TAC-induced hypertrophic heart tissue and AngII-induced cardiomyocyte hypertrophy. Up-regulation of miR-297 by specific mimics exacerbated AngII-induced cardiomyocyte hypertrophy, whereas inhibition of miR-297 suppressed the process. During cardiomyocyte hypertrophy, Sig-1R expression, which was negatively regulated by miR-297 by directly targeting its 3'untranslated region (UTR), was decreased. Furthermore, attenuation of miR-297 inhibited the activation of X-box binding protein 1 (Xbp1) and activating transcriptional factor 4 (ATF4) signaling pathways in NCMs.

Significance: Our data demonstrate that miR-297 promotes cardiomyocyte hypertrophy by inhibiting the expression of Sig-1R and activation of ER stress signaling, which provides a novel interpretation for cardiac hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2017.03.006DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte hypertrophy
24
mir-297
12
promotes cardiomyocyte
8
hypertrophy
8
sigma-1 receptor
8
sig-1r
8
cardiac hypertrophy
8
hypertrophy sig-1r
8
bioinformatic analysis
8
target mirna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!