Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions.

Cytotherapy

Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.

Published: May 2017

Background Aims: Intrauterine adhesion (IUA) is a common uterine cavity disease characterized by the unsatisfactory regeneration of damaged endometria. Recently, stem cell transplantation has been proposed to promote the recovery process. Here we investigated whether human amniotic mesenchymal stromal cells (hAMSCs), a valuable resource for transplantation therapy, could improve endometrial regeneration in rodent IUA models.

Methods: Forty female Sprague-Dawley rats were randomly assigned to five groups: normal, sham-operated, mechanical injury, hAMSC transplantation, and negative control group. One week after intervention and transplantation, histological analyses were performed, and immunofluorescent and immunohistochemical expression of cell-specific markers and messenger RNA expression of cytokines were measured.

Results: Thicker endometria, increased gland numbers and fewer fibrotic areas were found in the hAMSC transplantation group compared with the mechanical injury group. Engraftment of hAMSCs was detected by the presence of anti-human nuclear antigen-positive cells in the endometrial glands of the transplantation uteri. Transplantation of hAMSCs significantly decreased messenger RNA levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and increased those of anti-inflammatory cytokines (basic fibroblast growth factor, and interleukin-6) compared with the injured uterine horns. Immunohistochemical expression of endometrial epithelial cells was revealed in specimens after hAMSC transplantation, whereas it was absent in the mechanically injured uteri.

Conclusions: hAMSC transplantation promotes endometrial regeneration after injury in IUA rat models, possibly due to immunomodulatory properties. These cells provide a more easily accessible source of stem cells for future research into the impact of cell transplantation on damaged endometria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2017.02.003DOI Listing

Publication Analysis

Top Keywords

hamsc transplantation
16
cell transplantation
12
endometrial regeneration
12
transplantation
11
human amniotic
8
amniotic mesenchymal
8
mesenchymal stromal
8
regeneration rodent
8
damaged endometria
8
mechanical injury
8

Similar Publications

Tissue-engineered collagen matrix loaded with rat adipose-derived stem cells/human amniotic mesenchymal stem cells for rotator cuff tendon-bone repair.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, PR China. Electronic address:

The rotator cuff tendon-bone interface tissue exhibits high heterogeneity in its composition and structure, with collagen being its primary component. Here, we prepared tissue-engineered decellularized live hyaline cartilage grafts (dLHCG), this dLHCG scaffold's bioactive ECM mainly consists of collagen II, proteoglycans, and fibronectin, presenting a cartilage-like lacuna microstructure. The dLHCG scaffold loaded human amniotic mesenchymal stem cells (hAMSCs) and adipose stem cells (ADSCs) were implanted into the interface.

View Article and Find Full Text PDF

Objectives: Our previous study has showed that human amniotic mesenchymal stem cells (hAMSCs) transplantation improves neurological recovery after traumatic spinal cord injury (TSCI) in rats. However, less is known about the effects of exosomes derived from hAMSCs for TSCI. Here, we investigated whether hAMSCs-derived exosomes improve neurological recovery in TSCI rats and the underlying mechanisms.

View Article and Find Full Text PDF

Mesenchymal stromal/stem cells (MSCs) are a heterogeneous population of multipotent cells that can be obtained from various tissues, such as dental pulp, adipose tissue, bone marrow and placenta. MSCs have gained importance in the field of regenerative medicine because of their promising role in cell therapy and their regulatory abilities in tissue repair and regeneration. However, a better characterization of these cells and their products is necessary to further potentiate their clinical application.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion.

Methods: MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group.

View Article and Find Full Text PDF

Human amniotic mesenchymal stem cell-islet organoids enhance the efficiency of islet engraftment in a mouse diabetes model.

Life Sci

August 2024

The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China. Electronic address:

Aims: Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice.

Main Methods: We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!