Secondary fluorescence, the final term in the familiar matrix correction triumvirate Z·A·F, is the most challenging for Monte Carlo models to simulate. In fact, only two implementations of Monte Carlo models commonly used to simulate electron probe X-ray spectra can calculate secondary fluorescence-PENEPMA and NIST DTSA-II a (DTSA-II is discussed herein). These two models share many physical models but there are some important differences in the way each implements X-ray emission including secondary fluorescence. PENEPMA is based on PENELOPE, a general purpose software package for simulation of both relativistic and subrelativistic electron/positron interactions with matter. On the other hand, NIST DTSA-II was designed exclusively for simulation of X-ray spectra generated by subrelativistic electrons. NIST DTSA-II uses variance reduction techniques unsuited to general purpose code. These optimizations help NIST DTSA-II to be orders of magnitude more computationally efficient while retaining detector position sensitivity. Simulations execute in minutes rather than hours and can model differences that result from detector position. Both PENEPMA and NIST DTSA-II are capable of handling complex sample geometries and we will demonstrate that both are of similar accuracy when modeling experimental secondary fluorescence data from the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927617000307 | DOI Listing |
J Mater Sci
October 2024
National Institute of Standards and Technology, Gaithersburg, MD 20899-8370 USA.
Microsc Microanal
December 2023
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
A quantification model which uses standard X-ray spectra collected from bulk materials to determine the composition and mass thickness of single-layer and multilayer unsupported thin films is presented. The multivariate model can be iteratively solved for single layers in which each element produces at least one visible characteristic X-ray line. The model can be extended to multilayer thin films in which each element is associated with only one layer.
View Article and Find Full Text PDFMRS Adv
January 2022
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
NIST DTSA-II is a free, open access, and fully-documented comprehensive software platform for electron-excited X-ray microanalysis with energy dispersive spectrometry (EDS), including tools for quantification, measurement optimization, and spectrum simulation. EDS simulation utilizes a Monte Carlo electron trajectory simulation that includes characteristic and continuum X-ray generation, self-absorption, EDS window absorption, and energy-to-charge conversion leading to peak broadening. Spectra are simulated on an absolute basis considering electron dose and spectrometer parameters.
View Article and Find Full Text PDFMicrosc Microanal
September 2022
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Electron-excited X-ray microanalysis with energy-dispersive spectrometry (EDS) proceeds through the application of the software that extracts characteristic X-ray intensities and performs corrections for the physics of electron and X-ray interactions with matter to achieve quantitative elemental analysis. NIST DTSA-II is an open-access, fully documented, and freely available comprehensive software platform for EDS quantification, measurement optimization, and spectrum simulation. Spectrum simulation with DTSA-II enables the prediction of the EDS spectrum from any target composition for a specified electron dose and for the solid angle and window parameters of the EDS spectrometer.
View Article and Find Full Text PDFMicrosc Microanal
June 2017
National Institute of Standards and Technology,100 Bureau Drive,Gaithersburg,MD 20899-8372,USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!