Architectural assessment of rhesus macaque pelvic floor muscles: comparison for use as a human model.

Int Urogynecol J

Reproductive Medicine, Division of Urogynecology and Reconstructive Pelvic Surgery, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0863, USA.

Published: October 2017

Introduction And Hypothesis: Animal models are essential to further our understanding of the independent and combined function of human pelvic floor muscles (PFMs), as direct studies in women are limited. To assure suitability of the rhesus macaque (RM), we compared RM and human PFM architecture, the strongest predictor of muscle function. We hypothesized that relative to other models, RM best resembles human PFM.

Methods: Major architectural parameters of cadaveric human coccygeus, iliococcygeus, and pubovisceralis (pubococcygeus + puborectalis) and corresponding RM coccygeus, iliocaudalis, and pubovisceralis (pubovaginalis + pubocaudalis) were compared using 1- and 2-way analysis of variance (ANOVA) with post hoc testing. Architectural difference index (ADI), a combined measure of functionally relevant structural parameters predictive of length-tension, force-generation, and excursional muscle properties was used to compare PFMs across RM, rabbit, rat, and mouse.

Results: RM and human PFMs were similar with respect to architecture. However, the magnitude of similarity varied between individual muscles, with the architecture of the most distinct RM PFM, iliocaudalis, being well suited for quadrupedal locomotion. Except for the pubovaginalis, RM PFMs inserted onto caudal vertebrae, analogous to all tailed animals. Comparison of the PFM complex architecture across species revealed the lowest, thus closest to human, ADI for RM (1.9), followed by rat (2.0), mouse (2.6), and rabbit (4.7).

Conclusions: Overall, RM provides the closest architectural representation of human PFM complex among species examined; however, differences between individual PFMs should be taken into consideration. As RM is closely followed by rat with respect to PFM similarity with humans, this less-sentient and substantially cheaper model is a good alternative for PFM studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593758PMC
http://dx.doi.org/10.1007/s00192-017-3303-xDOI Listing

Publication Analysis

Top Keywords

rhesus macaque
8
pelvic floor
8
floor muscles
8
human
8
human pfm
8
pfm complex
8
pfm
6
pfms
5
architectural
4
architectural assessment
4

Similar Publications

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

January 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

The origin of color categories.

Proc Natl Acad Sci U S A

January 2025

Section on Perception, Cognition, Action, Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892.

To what extent does concept formation require language? Here, we exploit color to address this question and ask whether macaque monkeys have color concepts evident as categories. Macaques have similar cone photoreceptors and central visual circuits to humans, yet they lack language. Whether Old World monkeys such as macaques have consensus color categories is unresolved, but if they do, then language cannot be required.

View Article and Find Full Text PDF

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!