The aim of this case study was to assess the performance of a horizontal subsurface flow constructed wetland (HF-CW) located in southeastern Spain, filled with blast furnace slags (BFS), planted with Phragmites australis and designed to treat artificially aerated domestic wastewater to produce effluents suitable for agriculture reuse. The water quality parameters, included in the Spanish regulations for reclaimed wastewater reuse as agricultural quality 2.1, were monitored for one year. Data for all studied parameters, except electrical conductivity (EC) and sodium adsorption ratio (SAR), met the Spanish standards for reclaimed wastewater reuse due to the high evapotranspiration (ET) during the summer. The introduced improvements were effective for turbidity, total suspended solids (TSS), total nitrogen (TN), Escherichia coli (E. coli) and, specially, for total phosphorus (TP) with an average abatement of 96.9±1.7%. The improved HF-CW achieved similar or better percentage abatements than those reported using some hybrid systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.02.123DOI Listing

Publication Analysis

Top Keywords

constructed wetland
8
case study
8
reclaimed wastewater
8
wastewater reuse
8
domestic wastewaters
4
reuse
4
wastewaters reuse
4
reuse reclaimed
4
reclaimed improved
4
improved horizontal
4

Similar Publications

In addition to their advantages as promising methods for wastewater treatment, CWs exhibit poor performance in terms of N and P removal efficiency in the effluent of wastewater treatment plants. By focusing on this issue, we designed CWs integrated with a biochar-doped activated carbon cloth (ACC) electrode and alum sludge from water treatment plants as a substrate to achieve concomitant organic matter and nutrient removal efficiency. Compared with the use of one layer of alum sludge in CWs (CWs-C3) with ACC electrodes inserted in two layers, which uses one layer of alum sludge, a significant improvement in removal efficiency was achieved (96% for COD; 89% for TN; and 77% for TP).

View Article and Find Full Text PDF

Constructed wetlands (CWs) with low carbon properties represented an effective approach for treating low-polluted water and improving water quality. Here, a research scheme was proposed to achieve maximum operation benefits of the large-scale CWs through parameter identification, operation simulation, evaluation, and analysis of the water quality process. Based on the two-dimensional water hydrodynamic model coupling with the Eco-Lab water quality module (with nutrients), simulation for Bagong hybrid CWs was successfully conducted.

View Article and Find Full Text PDF

Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.

View Article and Find Full Text PDF

The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!