Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs.

J Hazard Mater

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:

Published: June 2017

Recent studies have investigated the potential of enhanced groundwater Vinyl Chloride (VC) remediation in the presence of methane and ethene through the interactions of VC-assimilating bacteria, methanotrophs and ethenotrophs. In this study, a mathematical model was developed to describe aerobic biotransformation of VC in the presence of methane and ethene for the first time. It examines the metabolism of VC by VC-assimilating bacteria as well as cometabolism of VC by both methanotrophs and ethenotrophs, using methane and ethene respectively, under aerobic conditions. The developed model was successfully calibrated and validated using experimental data from microcosms with different experimental conditions. The model satisfactorily describes VC, methane and ethene dynamics in all microcosms tested. Modeling results describe that methanotrophic cometabolism of ethene promotes ethenotrophic VC cometabolism, which significantly enhances aerobic VC degradation in the presence of methane and ethene. This model is expected to be a useful tool to support effective and efficient processes for groundwater VC remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.03.003DOI Listing

Publication Analysis

Top Keywords

methane ethene
20
methanotrophs ethenotrophs
12
presence methane
12
aerobic biotransformation
8
vinyl chloride
8
bacteria methanotrophs
8
vc-assimilating bacteria
8
ethene
6
methane
5
modeling aerobic
4

Similar Publications

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Semi-Confinement Effect Enhances CH and CH Production in CO Electrocatalytic Reduction.

Small

January 2025

Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, China.

Achieving fast conversion and precise regulation of product selectivity in electrochemical CO reduction reaction (CORR) remains a challenge. The space confinement effect provides a theoretical basis for the design of catalysts of different morphology and sizes and reveals the physical phenomena caused by the confinement of electrons and other particles at the nanoscale. In this work, a semi-confinement concept is introduced and a mesoporous silica nanosphere supported Cu catalyst (Cu-MSN) is prepared as a typical example to realize CORR enhancement and product selectivity regulation (methane vs ethylene).

View Article and Find Full Text PDF

Construction of a red phosphorus-molybdenum dioxide electron-rich interface for efficient photocatalytic reduction of carbon dioxide.

J Colloid Interface Sci

January 2025

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Developing efficient catalysts to enhance photoreduction carbon dioxide (CO) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination.

View Article and Find Full Text PDF

Metal-Organic Framework with Polar Pore Surface Designed for Purification of Both Natural Gas and Ethylene.

Chemistry

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.

The advancement of high-value CH purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating CH/CH and CH/CH mixtures. The findings reveal an outstanding CH adsorption capacity of 68 cm g and a moderate CH adsorption rate of 42 cm g, with a notably lower CH adsorption rate of 11 cm g.

View Article and Find Full Text PDF

Solar Wind Irradiation of Methane and Methane-Water Ices: A Molecular Dynamics Approach.

ACS Earth Space Chem

December 2024

Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.

Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!