Selective removal of heavy metal ions by disulfide linked polymer networks.

J Hazard Mater

Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark. Electronic address:

Published: June 2017

Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.03.007DOI Listing

Publication Analysis

Top Keywords

polymer network
16
heavy metal
12
metal ions
8
disulfide linked
8
linked polymer
8
polymer networks
8
activated carbon
8
sorption kinetics
8
metal
6
polymer
6

Similar Publications

Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.

View Article and Find Full Text PDF

Curdlan inclusion modifies the rheological properties and the helix-coil transition behavior of gelatin and increases the flexibility of gelatin films.

Food Chem

December 2024

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:

Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.

View Article and Find Full Text PDF

Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009.

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

Polymer Entanglement-Induced Hydrogel Adhesion.

Gels

December 2024

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!