Unlabelled: We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O for 6weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach.
Statement Of Significance: Low back pain (LBP) is associated with degeneration of the intervertebral disc (IVD). We have previously described development of a jelly delivery system (hydrogel). This has the potential to deliver adult stem cells to the centre of the IVD, known as the nucleus pulposus (NP). Here, we have demonstrated that adult stem cells can be safely injected into the NP using small bore needles, reducing damage to the disc. Following injection the hydrogel integrates with surrounding NP tissue, promotes differentiation of stem cells towards disc cells and restores IVD mechanical function. The hydrogel could be used to restore mechanical function to the IVD and deliver cells to promote regeneration of the disc as a minimally invasive treatment for LBP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2017.03.010 | DOI Listing |
Oncotarget
April 2018
Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK.
Bone loss resulting from degenerative diseases and trauma is a significant clinical burden which is likely to grow exponentially with the aging population. In a number of conditions where pre-formed materials are clinically inappropriate an injectable bone forming hydrogel could be beneficial. The development of an injectable hydrogel to stimulate bone repair and regeneration would have broad clinical impact and economic benefit in a variety of orthopedic clinical applications.
View Article and Find Full Text PDFActa Biomater
October 2017
Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK. Electronic address:
Unlabelled: The human intestinal cell lines: Caco-2 and HT29-MTX cells have been used extensively in 2D and 3D cell cultures as simple models of the small intestinal epithelium in vitro. This study aimed to investigate the potential of three hydrogel scaffolds to support the 3D culture of Caco-2 and HT29-MTX cells and critically assess their use as scaffolds to stimulate villi formation to model a small intestinal epithelium in vitro. Here, alginate, l-pNIPAM, and l-pNIPAM-co-DMAc hydrogels were investigated.
View Article and Find Full Text PDFActa Biomater
May 2017
Biomolecular Sciences Research Centre, Sheffield Hallam University, S1 1WB, UK. Electronic address:
Unlabelled: We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O for 6weeks.
View Article and Find Full Text PDFEur Cell Mater
July 2016
Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB,
Bone loss associated with degenerative disease and trauma is a clinical problem increasing with the aging population. Thus, effective bone augmentation strategies are required; however, many have the disadvantages that they require invasive surgery and often the addition of expensive growth factors to induce osteoblast differentiation. Here, we investigated a LaponiteÒ crosslinked, pNIPAM-DMAc copolymer (L-pNIPAM-co-DMAc) hydrogel with hydroxyapatite nanoparticles (HAPna), which can be maintained as a liquid ex vivo, injected via narrow-gauge needle into affected bone, followed by in situ gelation to deliver and induce osteogenic differentiation of human mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!