Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture.

J Biotechnol

Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, IN 46202, USA. Electronic address:

Published: April 2017

Hypoxia is a critical condition governing many aspects of cellular fate processes. The most common practice in hypoxic cell culture is to maintain cells in an incubator with controlled gas inlet (i.e., hypoxic chamber). Here, we describe the design and characterization of enzyme-immobilized hydrogels to create solution hypoxia under ambient conditions for in vitro cancer cell culture. Specifically, glucose oxidase (GOX) was acrylated and co-polymerized with poly(ethylene glycol)-diacrylate (PEGDA) through photopolymerization to form GOX-immobilized PEG-based hydrogels. We first evaluated the effect of soluble GOX on inducing solution hypoxia (O<5%) and found that both unmodified and acrylated GOX could sustain hypoxia for at least 24h even under ambient air condition with constant oxygen diffusion from the air-liquid interface. However, soluble GOX gradually lost its ability to sustain hypoxia after 24h due to the loss of enzyme activity over time. On the other hand, GOX-immobilized hydrogels were able to create hypoxia within the hydrogel for at least 120h, potentially due to enhanced protein stabilization by enzyme 'PEGylation' and immobilization. As a proof-of-concept, this GOX-immobilized hydrogel system was used to create hypoxia for in vitro culture of Molm14 (acute myeloid leukemia (AML) cell line) and Huh7 (hepatocellular carcinoma (HCC) cell line). Cells cultured in the presence of GOX-immobilized hydrogels remained viable for at least 24h. The expression of hypoxia associated genes, including carbonic anhydrase 9 (CA9) and lysyl oxidase (LOX), were significantly upregulated in cells cultured with GOX-immobilized hydrogels. These results have demonstrated the potential of using enzyme-immobilized hydrogels to create hypoxic environment for in vitro cancer cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2017.03.007DOI Listing

Publication Analysis

Top Keywords

cell culture
12
enzyme-immobilized hydrogels
8
hydrogels create
8
vitro cancer
8
cancer cell
8
solution hypoxia
8
hypoxia
4
create hypoxia
4
hypoxia vitro
4
culture hypoxia
4

Similar Publications

FilmArray® Effectively Detects All Clades of F41 but Encounters Challenges with Other Adenovirus Species.

J Infect Chemother

January 2025

Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan. Electronic address:

The BioFire FilmArray® Gastrointestinal (GI) Panel, a widely used diagnostic tool, is designed to detect the genetic material of 22 common pathogens responsible for gastroenteritis, including viruses, bacteria, and parasites. It can detect human adenovirus (HAdV) species F, particularly serotypes F40 and F41, which are the major causes of diarrhea and mortality in children. However, its potential shortcomings in detecting other HAdV species limit its effectiveness in broader HAdV detection in clinical settings and outbreak investigations.

View Article and Find Full Text PDF

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

Establishing quality assurance for COVID-19 antigen tests in the Indo Pacific Region: A multi-site implementation study.

Diagn Microbiol Infect Dis

December 2024

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia.

Background: Quality assurance programs (QAPs) are used to evaluate the analytical quality of a diagnostic test and provide feedback to improve quality processes in testing. Rapid diagnostic tests were used in both laboratory and non-laboratory settings to diagnose COVID-19, although varied in reported performance. We aimed to design and implement a QAP for antigen rapid diagnostic tests (Ag-RDTs) for COVID-19 in Cambodia, Lao PDR, and Papua New Guinea.

View Article and Find Full Text PDF

Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:

Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.

View Article and Find Full Text PDF

CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out.

Colloids Surf B Biointerfaces

January 2025

Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!