Enzyme-antibody dual-film modified gold nanoparticle probe for ultrasensitive detection of alpha fetoprotein.

Biologicals

College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China. Electronic address:

Published: May 2017

In this study, we designed a comprehensive strategy for the ultrasensitive detection of alpha fetoprotein (AFP) with high specificity using gold nanoparticle (AuNP)-based enzyme-linked immunosorbent assay (ELISA). A dual-film modified probe was synthesized by coating AuNPs with horseradish peroxidase (HRP) on its surface. Anti-AFP monoclonal antibody (McAb) was immobilized on the surface of the enzyme using glutaraldehyde cross-linking method. AuNPs, employed as support for the immobilization of HRP. HRP was used not only as the enzymatic-amplified tracer but also as a bridge for loading McAb. The limit of detection was 2 ng mL. The developed probes can provide an alternative approach with high sensitivity and a simple process similar to that of the traditional HRP-McAb based ELISA for the ultrasensitive detection of AFP in serum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biologicals.2017.02.008DOI Listing

Publication Analysis

Top Keywords

ultrasensitive detection
12
dual-film modified
8
gold nanoparticle
8
detection alpha
8
alpha fetoprotein
8
enzyme-antibody dual-film
4
modified gold
4
nanoparticle probe
4
probe ultrasensitive
4
detection
4

Similar Publications

Advanced cortisol detection: A cMWCNTs-enhanced MB@Zr-MOF ratiometric electrochemical aptasensor.

Bioelectrochemistry

January 2025

School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China. Electronic address:

A ratiometric electrochemical aptasensor was developed for ultra-sensitive detection of cortisol using aptamer (Apt) as recognition element, methylene blue (MB) as signal probe, and zirconium metal-organic framework (Zr-MOF) as carrier loaded with abundant MB for signal amplification. The carboxylated multi-walled carbon nanotubes (cMWCNTs)-modified Au electrode showed excellent electrochemical performance to immobilize complementary DNA (cDNA) for hybridizing with MB@Zr-MOF-Apt via amide bonds. In the presence of cortisol, it would compete with cDNA for binding the Apt, resulting in the detachment of MB@Zr-MOF-Apt complex from the electrode surface, and the electrochemical signal of MB was decreased, while that of [Fe(CN)] was basically unchanged.

View Article and Find Full Text PDF

Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay.

Biosens Bioelectron

January 2025

Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:

Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!