Demethylase Kdm6a epigenetically promotes IL-6 and IFN-β production in macrophages.

J Autoimmun

Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

Published: June 2017

Molecular regulation of innate signal-initiated proinflammatory cytokine production has been extensively investigated. However, the roles of epigenetic modifiers and their underlying mechanisms in regulating innate inflammatory response and development of autoimmune diseases need to be further understood. Demethylase Kdm6a promotes gene transcription in cell-lineage specification through demethylating histone H3 lysine di/tri-methylation (H3K27me2/3), and loss of Kdm6a results in developmental defects. However, the function of Kdm6a in innate immunity and inflammation remains largely unknown. Here we found that Kdm6a, significantly downregulated via JNK pathway upon innate stimuli, promotes cytokine IL-6 and IFN-β transcription in primary macrophages during innate response. Kdm6a promoted IL-6 expression through demethylating H3K27me3 at promoter in a demethylase enzymatic activity-dependent manner. Interestingly, Kdm6a promoted IFN-β expression independent of its demethylase enzymatic activity, but through increasing transcription of IFN-β-specific enhancer-derived RNA (eRNA) S-IRE1. For the underlying mechanism, Kdm6a interacted with MLL4 and promoted MLL4 recruitment and H3K4me2 level in S-IRE1 region of Ifnb1 gene for full activation of enhancer. Our results reveal a previously unknown role of kdm6a in promoting innate IFN-β gene transcription at enhancer, in addition to demethylation at promoter. The function of Kdm6a in promoting innate inflammatory response also adds insights to better understanding of epigenetic modifiers in inflammatory and autoimmune disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaut.2017.02.007DOI Listing

Publication Analysis

Top Keywords

kdm6a
9
demethylase kdm6a
8
il-6 ifn-β
8
epigenetic modifiers
8
innate inflammatory
8
inflammatory response
8
gene transcription
8
function kdm6a
8
kdm6a promoted
8
demethylase enzymatic
8

Similar Publications

Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.

View Article and Find Full Text PDF

The Kabuki syndrome (KS) is a rare congenital disease that has two different types, KS1 and KS2, with variant in epigenetic gene KMT2D and KDM6A, respectively. It is associated with multiple abnormalities such as (developmental delay, atypical facial features, cardiac anomalies, minor skeleton anomalies, genitourinary anomalies, and mild to moderate intellectual disability). This syndrome can lead to neonatal hypoglycemia that results from hyperinsulinemia and electrolyte abnormalities.

View Article and Find Full Text PDF

[Aggressive mucinous tubular and spindle cell carcinoma of the kidney: a clinicopathological and genetic analysis of four cases].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing100191, China.

To understand the clinicopathological and molecular genetic characteristics of aggressive renal mucinous tubular and spindle cell carcinoma (MTSCC). The clinical features, histology, immunophenotype, molecular characteristics and prognosis of 4 cases of metastatic/recurrent renal MTSCC that were submitted to the Peking University Third Hospital (2 cases), Institute of Urology, Peking University (one case) and Zhejiang Provincial People's Hospital (one case) from 2015 to 2020 were retrospectively reviewed and analyzed. Among the four patients, two were male and two were female.

View Article and Find Full Text PDF
Article Synopsis
  • Adenoid cystic carcinomas (AdCC) of salivary gland origin are primarily defined by the presence of specific gene fusions, notably MYB::NFIB and MYBL1::NFIB, with sinonasal AdCC being particularly aggressive and lacking effective treatments.
  • Researchers conducted an extensive analysis of 88 sinonasal AdCC cases using various techniques like NGS and FISH to identify gene fusions and mutations, finding that the majority harbored canonical fusions while some had noncanonical ones, with a few tumors showing no fusions at all.
  • Mutational analysis revealed that about 68% of AdCCs tested (21 out of 31) had mutations in key oncogenes, highlighting potential areas for targeted
View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!