Influence of ultrafiltration membrane on ophiopogonins and homoisoflavonoids in Ophiopogon japonicus as measured by ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

Chin J Nat Med

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Published: February 2017

Ultrafiltration is one of the most fascinating technologies, which makes it possible to improve the quality of traditional medicines for application in the pharmaceutical industry. However, researchers have paid little attention to the effect of ultrafiltration membrane on traditional medicines chemical constituents. In this work, Ophiopogon japonicus (L.f) Ker-Gawl. was used as an example to illuminate the influence of ultrafiltration with different material and molecular weight cut-off (MWCO) membrane on natural chemical constituents as measured by ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry (UFLC-IT-TOF/MS). Our results indicated that ultrafiltration membrane significantly impacted homoisoflavonoids, especially homoisoflavonoids that were almost completely retained on the polyethersulfone (PES) membrane. We also found that the larger number of aglycone hydroxy and sugar moiety in steroid saponins, the higher the transmittance. Furthermore, the passage rate (%) of ophiogenin type saponins was higher than that of others. The possible adsorptive mechanisms were hydrogen bonding, hydrophobic interactions, and benzene ring interaction by π-π stacking. In conclusion, it is crucial to choose appropriate ultrafiltration membrane based on the characteristics of produce products for application of ultrafiltration technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(17)30028-6DOI Listing

Publication Analysis

Top Keywords

ultrafiltration membrane
16
influence ultrafiltration
8
ophiopogon japonicus
8
measured ultra-fast
8
ultra-fast liquid
8
liquid chromatography
8
chromatography coupled
8
coupled ion
8
ion trap
8
trap time-of-flight
8

Similar Publications

Mitigation of irreversible membrane biofouling by CNTs-PVDF conductive composite membrane.

Environ Res

December 2024

School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, PR China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China. Electronic address:

Biofouling has been one of the major challenges impacting the long-term stable operation of ultrafiltration processes. Irreversible biofouling is considerably more harmful than reversible biofouling. Conductive membrane, as a new technology to effectively mitigate membrane fouling, lack research of controlling irreversible biofouling.

View Article and Find Full Text PDF

The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.

View Article and Find Full Text PDF

This study investigated membrane fouling issues associated with the operation of a submerged ultrafiltration membrane in a drinking water treatment plant (DWTP) and optimized the associated chemical cleaning strategies. By analyzing the surface components of the membrane foulant and the compositions of the membrane cleaning solution, the primary causes of membrane fouling were identified. Membrane fouling control strategies suitable for the DWTP were evaluated through chemical cleaning tests conducted for bench-scale, full-scale, and engineering cases.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

For patients undergoing long-term peritoneal dialysis (PD), exposure to biologically incompatible PD solutions and the consequent peritoneal structure change can lead to progressive angiogenesis and fibrosis, and ultimately result in ultrafiltration failure (UFF). Peritoneal transport studies in aquaporin 1 (AQP1) knockout mice indicate that water transport across the peritoneum is mediated by AQP1, which accounts for up to 50% of ultrafiltration. Another recent study on a large cohort of PD patients with kidney failure further substantiated the impact of AQP1 genotype variation on water channel expression in the peritoneal membrane, influencing water transport, ultrafiltration, and patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!