HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication. Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and neurotoxicity. Human monocytoid cells (U937) transduced with a minimal HIV-Vector were co-cultured with human microglial cells (HMC3). Secretion of pro-inflammatory/neurotoxic cytokines (CXCL10, CCL5, and CCL2: p < 0.001; IL-6: p < 0.01) by co-cultures was strongly increased compared to microglia in contact with HIV-particles alone. Upon treatment with teriflunomide, cytokine secretion was decreased (CXCL10, 3-fold; CCL2, 2.5-fold; IL-6, 2.2-fold; p < 0.001) and monomethylfumarate treatment led to 2.9-fold lower CXCL10 secretion (p < 0.001). Reduced toxicity of co-culture conditioned media on human fetal neurons by teriflunomide (29%, p < 0.01) and monomethylfumarate (27%, p < 0.05) indicated functional relevance. Modulation of innate immune functions by teriflunomide and monomethylfumarate may target neurotoxic inflammation in the context of HAND.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346211 | PMC |
http://dx.doi.org/10.1186/s12974-017-0829-2 | DOI Listing |
J Neuroinflammation
March 2017
Department of Neurology, University Hospital Bern and University of Bern, Bern, Switzerland.
HIV-associated neurocognitive disorders (HAND) affect about 50% of infected patients despite combined antiretroviral therapy (cART). Ongoing compartmentalized inflammation mediated by microglia which are activated by HIV-infected monocytes has been postulated to contribute to neurotoxicity independent from viral replication. Here, we investigated effects of teriflunomide and monomethylfumarate on monocyte/microglial activation and neurotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!