A quantitative approach was proposed to determine the spatial resolution of transmission electron backscatter diffraction (t-EBSD) and to understand the limits of spatial resolution of t-EBSD. In this approach, Cu bicrystals and digital image correlation were employed. The effects of accelerating voltage and specimen thickness on the spatial resolution of t-EBSD were also investigated. t-EBSD specimens with 8μm×10μm dimensions and different thicknesses were prepared using focused ion beam milling. The optimized quality of Kikuchi pattern was achieved at a working distance of 12mm and a tilting angle of 20°. The optimum depth resolution of 34.4nm was observed in the lower surface of a 100nm thick sample at 25kV. Thus, the penetration depth from the upper surface is 65.6nm. The optimum lateral and longitudinal resolutions obtained from a 100nm thick sample at 30kV are 25.2 and 43.4nm, respectively. The spatial resolution of t-EBSD can be enhanced by increasing the accelerating voltage and decreasing the sample thickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2017.01.020 | DOI Listing |
Light Sci Appl
January 2025
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
In recent advancements in life sciences, optical microscopy has played a crucial role in acquiring high-quality three-dimensional structural and functional information. However, the quality of 3D images is often compromised due to the intense scattering effect in biological tissues, compounded by several issues such as limited spatiotemporal resolution, low signal-to-noise ratio, inadequate depth of penetration, and high phototoxicity. Although various optical sectioning techniques have been developed to address these challenges, each method adheres to distinct imaging principles for specific applications.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266000/572000, China; Sanya Oceanographic Laboratory, Sanya 572000, China; Laboratory for Ocean Dynamics and Climate, Qingdao Marine Science and Technology Center, Qingdao 266000, China. Electronic address:
The South China Sea (SCS) is abundant with complex multiscale dynamic processes but their spatiotemporal variations, generation and evolution mechanisms, and mutual interactions remain inadequately understood due to the lack of long-term in situ observations. To explore oceanic multiscale dynamics in the SCS, the SCS Mooring Array (SCSMA) was began to be constructed since 2009. The SCSMA consists of ∼40 moorings and is the largest in situ ocean observing system in marginal seas worldwide.
View Article and Find Full Text PDFSci Total Environ
December 2024
Environmental Economics (EnvEcon), Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium; Flanders Make@UAntwerp, 2000 Antwerp, Belgium; NANOlight Centre of Excellence, Prinsstraat 13, 2000 Antwerp, Belgium. Electronic address:
Nutrient enrichment of water bodies can lead to eutrophication, which poses a global threat to freshwater ecosystems, affecting biodiversity and water quality. While human activities have accelerated eutrophication, climate change further complicates the dynamics of nutrient cycling and ecosystem responses. Here, we provide global, spatially explicit freshwater eutrophication characterization factors, at an annual resolution from 2021 up to 2099 based on eight different climate change scenarios.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.
Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.
View Article and Find Full Text PDFVet Ital
December 2024
Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy.
Water temperature is a vital parameter impacting the growth and survival of aquatic life. Using satellite-derived infrared data, this study analysed the trend of sea surface temperature (SST) from 2008 to 2022 of the Adriatic coastal waters of Italian regions. The "Mediterranean Sea High Resolution and Ultra High Resolution Sea Surface Temperature Analysis" product collected from the Copernicus Marine Service of European Copernicus programme was used, as a good compromise among spatial accuracy, temporal frequency and coverage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!