Application of static and impulse magnetic fields to bacteria Rhodospirillum rubrum VKM B-1621.

AMB Express

Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki 5, Pushchino, Moscow region, 142290, Russia.

Published: December 2017

The paper presents effects of different magnetic fields (MFs) (static-SMF and impulse-IMF) on bacteria Rhodospirillum rubrum VKM B-1621. The MFs had different magnetic strength: SMF-up to 173 mT; IMF-25 mT. The studied object was amylase activity which was measured by decrease in the starch concentration during incubation in the MFs. The term of incubation in the MFs was limited with 2 h. The SMF affected neither amylase activity of R. rubrum nor standard deviation in distribution of the residual starch concentration along the plate but the IMF did. The IMS effects varied along the plate which could be related with distance from the magnetic center of the applied device. In whole, application of impulse MFs can regulate bacterial activity and thus could be used for biotechnological application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346098PMC
http://dx.doi.org/10.1186/s13568-017-0362-9DOI Listing

Publication Analysis

Top Keywords

magnetic fields
8
bacteria rhodospirillum
8
rhodospirillum rubrum
8
rubrum vkm
8
vkm b-1621
8
amylase activity
8
starch concentration
8
incubation mfs
8
mfs
5
application static
4

Similar Publications

Coherent manipulation of photochemical spin-triplet formation in quantum dot-molecule hybrids.

Nat Mater

January 2025

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state.

View Article and Find Full Text PDF

Objective: The aim of this study was to systematically review the preclinical studies that have applied the static magnetic field to wound healing.

Methods: The search strategy was performed in databases: PubMed, Embase, Scopus, Web of Science, LILACS, CINAHL and Cochrane Database, and in gray literature. The inclusion criteria were: Pre-clinical studies, either with a separate control/sham parallel-group or cross-over design in rodents that used magnets to treat skin injuries anywhere on the body.

View Article and Find Full Text PDF

This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible -hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H solubility enables the PFCs to deliver substantial polarization transfer from -hydrogen, achieving up to 2400-fold signal gains for H NMR detection and 67,000-fold (22% polarization) for N NMR detection at 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!