Silicon has been found to enhance the plants' tolerance to heavy metal stress. In a field study, the effect of different types of Si-rich soil amendments (slag, ground slag, and diatomaceous earth) and fertilizers (activated slag, ground activated slag, and commercial Si fertilizer) on the distribution of soluble and insoluble forms of Cd in the rice plant organs grown on long-term cultivated paddy soil contaminated with Cd (central part of Hunan Province, China) was investigated. The soluble Si and Cd were tested in the apoplast and symplast of the roots, stems, and leaves of rice at a tillering stage. The Si-rich materials increased rice biomass by up to 15.5% and reduced the total leaf Cd by 8.5 to 21.9%. Commercial Si fertilizer was the most effective. Three main locations of the most active Si-Cd interactions were distinguished in the soil-plant system: soil, where monosilicic acid affords adsorption and fixation of the bioavailable Cd and root apoplast and apoplast above roots, where monosilicic acid can precipitate Cd. The transport of Cd to stems and leaves and the mobility of Cd in the soil depend on the content of monosilicic acid in the system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-8730-1DOI Listing

Publication Analysis

Top Keywords

monosilicic acid
12
tillering stage
8
slag ground
8
activated slag
8
commercial fertilizer
8
stems leaves
8
silicon fertilizers
4
fertilizers cadmium
4
rice
4
cadmium rice
4

Similar Publications

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential".

View Article and Find Full Text PDF

Dissolved silica and transparent exopolymer particles (TEP) are the primary foulants in reverse osmosis (RO) desalinated brackish water and wastewater. In this study, we investigated the fouling properties of varying silica concentrations with TEP on the membrane surface and discovered a synergistic fouling effect between the silanol group (Si-OH) and the TEP carboxyl group (-COOH). The membrane fouling experiments showed that silica fouling approached saturation at 6 mM, with little variation in membrane flux as the silica concentration increased.

View Article and Find Full Text PDF

Multifaceted roles of silicon nano particles in heavy metals-stressed plants.

Environ Pollut

January 2024

Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India. Electronic address:

Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors.

View Article and Find Full Text PDF

Silicon-mediated regulation of cadmium transport and activation of antioxidant defense system enhances Pennisetum glaucum resistance to cadmium stress.

Plant Physiol Biochem

February 2023

College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, PR China. Electronic address:

Pennisetum glaucum is an important forage grass for livestock. However, the large accumulation of cadmium (Cd) in plant tissues increases the risk of heavy metals entering the food chain in Cd-contaminated soils. Silicon (Si) can inhibit cadmium (Cd) uptake and enhance tolerance of plant to Cd toxicity, but whether and how Si alleviates Cd toxicity in grass and the underlying mechanisms are unclear.

View Article and Find Full Text PDF

Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules.

Environ Pollut

October 2022

Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia; Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, Slovakia.

Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!