Resveratrol (3,4',5-trihydroxystilbene; CHO) is a polyphenolic phytoalexin found in grapes, berries, peanuts, and wines. Resveratrol has been viewed as an antioxidant, anti-inflammatory, anti-apoptotic, and anticancer agent. Moreover, it has been reported that resveratrol modulates mitochondrial function, redox biology, and dynamics in both in vitro and in vivo experimental models. Resveratrol also attenuates mitochondrial impairment induced by certain stressors. Resveratrol upregulates, for example, mitochondria-located antioxidant enzymes, decreasing the production of reactive species by these organelles. Resveratrol also triggers mitochondrial biogenesis, ameliorating the mitochondria-related bioenergetics status in mammalian cells. In the present work, we discuss about the effects of resveratrol on brain mitochondria. Brain cells (both neuronal and glial) are susceptible to mitochondrial dysfunction due to their high demand for adenosine triphosphate (ATP). Additionally, brain cells consume oxygen (O) at very high rates, leading to a proportionally high mitochondrial production of reactive species. Therefore, strategies focusing on the maintenance of mitochondrial function in these cell types are of pharmacological interest in the case of neurodegenerative diseases, which involve mitochondrial impairment and increased generation of reactive species, leading to neuroinflammation and cell death. The mechanism by which resveratrol protects mitochondrial function and dynamics is not completely understood, and further research would be necessary in order to investigate exactly how resveratrol affects mitochondria-related parameters. Furthermore, it is particularly important because resveratrol is able to induce cytotoxicity depending on its dosage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-017-0448-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!