Background: Meticulous haemostasis is one of the most important factors during microneurosurgical resection of brain arteriovenous malformation (AVM). Controlling major arterial feeders and draining veins with clips and bipolar coagulation are well-established techniques, while managing with bleeding from deep tiny vessels still proves to be challenging. This technical note describes a technique used by the senior author in AVM surgery for last 20 years in dealing with the issue highlighted.

Method: "Dirty coagulation" is a technique of bipolar coagulation of small feeders carried out together with a thin layer of brain tissue that surrounds these fragile vessels. The senior author uses this technique for achieving permanent haemostasis predominantly in large and/or deep-seated AVMs. To illustrate the efficacy of this technique, we retrospectively reviewed the outcome of Spetzler-Martin (SM) grade III-V AVMs resected by the senior author over the last 5 years (2010-2015).

Results: Thirty-five cases of AVM surgeries (14 SM grade III, 15 SM grade IV and 6 SM grade V) in this 5-year period were analysed. No postoperative intracranial haemorrhage was encountered as a result of bleeding from the deep feeders. Postoperative angiograms showed complete resection of all AVMs, except in two cases (SM grade V and grade III).

Conclusions: "Dirty coagulation" provides an effective way to secure haemostasis from deep tiny feeders. This cost-effective method could be successfully used for achieving permanent haemostasis and thereby decreasing postoperative haemorrhage in AVM surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-017-3138-8DOI Listing

Publication Analysis

Top Keywords

"dirty coagulation"
12
bleeding deep
12
senior author
12
coagulation" technique
8
deep feeders
8
brain arteriovenous
8
arteriovenous malformation
8
bipolar coagulation
8
deep tiny
8
avm surgery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!