White sturgeon (Acipenser transmontanus) completely protect intracellular tissue pH (pH) despite large reductions in extracellular (blood) pH (pH), termed preferential pH regulation, in response to elevated environmental PCO (hypercarbia) and in general appear to be relatively resilient to stressors. Preferential pH regulation is thought to be associated with hypercarbia tolerance in general, but has also recently been observed to protect pH against metabolic acidoses induced by exhaustive exercise and anoxia in a tropical air breathing catfish. We hypothesized that preferential pH regulation may also be a general strategy of acid-base regulation in sturgeon. To address this hypothesis, severe acidoses were imposed to reduce pH, and the presence or absence of preferential pH regulation was assessed in red blood cells (RBC), heart, brain, liver and white muscle. A respiratory acidosis was imposed using hyperoxia, while metabolic acidoses were induced by exhaustive exercise, anoxia or air exposure. Reductions in pH occurred following hyperoxia (0.15 units), exhaustive exercise (0.30 units), anoxia (0.10 units) and air exposure (0.35 units); all acidoses reduced RBC pH. Following hyperoxia, heart, brain and liver pH were preferentially regulated against the reduction in pH, similar to hypercarbia exposure. Following all metabolic acidoses heart pH was protected and brain pH remained unchanged following exhaustive exercise and air exposure, however, brain pH was reduced following anoxia. Liver and white muscle pH were reduced following all metabolic acidoses. These results suggest preferential pH regulation may be a general strategy during respiratory acidoses but during metabolic acidoses, the response differs between source of acidoses and tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-017-1065-xDOI Listing

Publication Analysis

Top Keywords

preferential regulation
20
metabolic acidoses
20
exhaustive exercise
16
air exposure
12
acidoses
10
white sturgeon
8
sturgeon acipenser
8
acipenser transmontanus
8
acid-base regulation
8
acidoses induced
8

Similar Publications

The plainfin midshipman fish (Porichthys notatus) relies on the production and reception of social acoustic signals for reproductive success. During spawning, male midshipman produce long duration advertisement calls to attract females, which use their auditory sense to locate and access calling males. While seasonal changes based on reproductive state in inner-ear auditory sensitivity and frequency encoding in midshipman is well documented, little is known about reproductive-state dependent changes in central auditory sensitivity and auditory neural responsiveness to conspecific advertisement calls.

View Article and Find Full Text PDF

Green Glyphosate Treatment with Ferrihydrite and CaO via Forming Surface Ternary Complex.

Environ Sci Technol

January 2025

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.

View Article and Find Full Text PDF

The chloroplast RNA-binding protein CP29A supports expression during cold acclimation.

Proc Natl Acad Sci U S A

February 2025

Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.

The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.

View Article and Find Full Text PDF

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!